Sequential linearization method for viscous/elastic heterogeneous materials

2011 ◽  
Vol 30 (5) ◽  
pp. 650-664 ◽  
Author(s):  
K. Kowalczyk-Gajewska ◽  
H. Petryk
2012 ◽  
Vol 34 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Nguyen Dong Anh ◽  
I. Elishakoff

In the study an extension of the Bubnov-Galerkin method in terms of the equivalent linearization method is presented. It is combined with sequential linearization and nonlinear procedure to yield a new method for solving nonlinear equations which can improve the accuracy when the nonlinearity is strong. For illustration the Duffing oscillator is considered to show the effectiveness of the proposed method.


AIAA Journal ◽  
1990 ◽  
Vol 28 (2) ◽  
pp. 290-295 ◽  
Author(s):  
G. N. Vanderplaats ◽  
Y. J. Yang ◽  
D. S. Kim

2020 ◽  
Vol 86 (7) ◽  
pp. 45-54
Author(s):  
A. M. Lepikhin ◽  
N. A. Makhutov ◽  
Yu. I. Shokin

The probabilistic aspects of multiscale modeling of the fracture of heterogeneous structures are considered. An approach combining homogenization methods with phenomenological and numerical models of fracture mechanics is proposed to solve the problems of assessing the probabilities of destruction of structurally heterogeneous materials. A model of a generalized heterogeneous structure consisting of heterogeneous materials and regions of different scales containing cracks and crack-like defects is formulated. Linking of scales is carried out using kinematic conditions and multiscale principle of virtual forces. The probability of destruction is formulated as the conditional probability of successive nested fracture events of different scales. Cracks and crack-like defects are considered the main sources of fracture. The distribution of defects is represented in the form of Poisson ensembles. Critical stresses at the tops of cracks are described by the Weibull model. Analytical expressions for the fracture probabilities of multiscale heterogeneous structures with multilevel limit states are obtained. An approach based on a modified Monte Carlo method of statistical modeling is proposed to assess the fracture probabilities taking into account the real morphology of heterogeneous structures. A feature of the proposed method is the use of a three-level fracture scheme with numerical solution of the problems at the micro, meso and macro scales. The main variables are generalized forces of the crack propagation and crack growth resistance. Crack sizes are considered generalized coordinates. To reduce the dimensionality, the problem of fracture mechanics is reformulated into the problem of stability of a heterogeneous structure under load with variations of generalized coordinates and analysis of the virtual work of generalized forces. Expressions for estimating the fracture probabilities using a modified Monte Carlo method for multiscale heterogeneous structures are obtained. The prospects of using the developed approaches to assess the fracture probabilities and address the problems of risk analysis of heterogeneous structures are shown.


Sign in / Sign up

Export Citation Format

Share Document