scholarly journals Restoration of spatial hearing in adult cochlear implant users with single-sided deafness

2019 ◽  
Vol 372 ◽  
pp. 69-79 ◽  
Author(s):  
Ruth Y. Litovsky ◽  
Keng Moua ◽  
Shelly Godar ◽  
Alan Kan ◽  
Sara M. Misurelli ◽  
...  
Author(s):  
Till F. Jakob ◽  
Iva Speck ◽  
Ann-Kathrin Rauch ◽  
Frederike Hassepass ◽  
Manuel C. Ketterer ◽  
...  

Abstract Purpose The aim of the study was to compare long-term results after 1 year in patients with single-sided deafness (SSD) who were fitted with different hearing aids. The participants tested contralateral routing of signals (CROS) hearing aids and bone-anchored hearing systems (BAHS). They were also informed about the possibility of a cochlear implant (CI) and chose one of the three devices. We also investigated which factors influenced the choice of device. Methods Prospective study with 89 SSD participants who were divided into three groups by choosing BAHS, CROS, or CI. All participants received test batteries with both objective hearing tests (speech perception in noise and sound localisation) and subjective questionnaires. Results 16 participants opted for BAHS-, 13 for CROS- and 30 for CI-treatment. The greater the subjective impairment caused by SSD, the more likely patients were to opt for surgical treatment (BAHS or CI). The best results in terms of speech perception in noise (especially when sound reaches the deaf ear and noise the hearing ear), sound localization, and subjective results were achieved with CI. Conclusion The best results regarding the therapy of SSD are achieved with a CI, followed by BAHS. This was evident both in objective tests and in the subjective questionnaires. Nevertheless, an individual decision is required in each case as to which SSD therapy option is best for the patient. Above all, the patient's subjective impairment and expectations should be included in the decision-making process.


2016 ◽  
Vol 342 ◽  
pp. 124-133 ◽  
Author(s):  
Jeroen P.M. Peters ◽  
Edwin Bennink ◽  
Wilko Grolman ◽  
Gijsbert A. van Zanten

2021 ◽  
Vol 150 (4) ◽  
pp. 2316-2326
Author(s):  
Elad Sagi ◽  
Mahan Azadpour ◽  
Jonathan Neukam ◽  
Nicole Hope Capach ◽  
Mario A. Svirsky

Author(s):  
Snandan Sharma ◽  
Waldo Nogueira ◽  
A. John van Opstal ◽  
Josef Chalupper ◽  
Lucas H. M. Mens ◽  
...  

Purpose Speech understanding in noise and horizontal sound localization is poor in most cochlear implant (CI) users with a hearing aid (bimodal stimulation). This study investigated the effect of static and less-extreme adaptive frequency compression in hearing aids on spatial hearing. By means of frequency compression, we aimed to restore high-frequency audibility, and thus improve sound localization and spatial speech recognition. Method Sound-detection thresholds, sound localization, and spatial speech recognition were measured in eight bimodal CI users, with and without frequency compression. We tested two compression algorithms: a static algorithm, which compressed frequencies beyond the compression knee point (160 or 480 Hz), and an adaptive algorithm, which aimed to compress only consonants leaving vowels unaffected (adaptive knee-point frequencies from 736 to 2946 Hz). Results Compression yielded a strong audibility benefit (high-frequency thresholds improved by 40 and 24 dB for static and adaptive compression, respectively), no meaningful improvement in localization performance (errors remained > 30 deg), and spatial speech recognition across all participants. Localization biases without compression (toward the hearing-aid and implant side for low- and high-frequency sounds, respectively) disappeared or reversed with compression. The audibility benefits provided to each bimodal user partially explained any individual improvements in localization performance; shifts in bias; and, for six out of eight participants, benefits in spatial speech recognition. Conclusions We speculate that limiting factors such as a persistent hearing asymmetry and mismatch in spectral overlap prevent compression in bimodal users from improving sound localization. Therefore, the benefit in spatial release from masking by compression is likely due to a shift of attention to the ear with the better signal-to-noise ratio facilitated by compression, rather than an improved spatial selectivity. Supplemental Material https://doi.org/10.23641/asha.16869485


2019 ◽  
Vol 40 (6) ◽  
pp. e575-e580 ◽  
Author(s):  
Dayse Távora-Vieira ◽  
Gunesh P. Rajan ◽  
Paul Van de Heyning ◽  
Griet Mertens

2015 ◽  
Vol 20 (3) ◽  
pp. 183-188 ◽  
Author(s):  
Michael F. Dorman ◽  
Daniel Zeitler ◽  
Sarah J. Cook ◽  
Louise Loiselle ◽  
William A. Yost ◽  
...  

In this report, we used filtered noise bands to constrain listeners' access to interaural level differences (ILDs) and interaural time differences (ITDs) in a sound source localization task. The samples of interest were listeners with single-sided deafness (SSD) who had been fit with a cochlear implant in the deafened ear (SSD-CI). The comparison samples included listeners with normal hearing and bimodal hearing, i.e. with a cochlear implant in 1 ear and low-frequency acoustic hearing in the other ear. The results indicated that (i) sound source localization was better in the SSD-CI condition than in the SSD condition, (ii) SSD-CI patients rely on ILD cues for sound source localization, (iii) SSD-CI patients show functional localization abilities within 1-3 months after device activation and (iv) SSD-CI patients show better sound source localization than bimodal CI patients but, on average, poorer localization than normal-hearing listeners. One SSD-CI patient showed a level of localization within normal limits. We provide an account for the relative localization abilities of the groups by reference to the differences in access to ILD cues.


Sign in / Sign up

Export Citation Format

Share Document