No Benefit of Deriving Cochlear-Implant Maps From Binaural Temporal-Envelope Sensitivity for Speech Perception or Spatial Hearing Under Single-Sided Deafness

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Coral E. Dirks ◽  
Peggy B. Nelson ◽  
Andrew J. Oxenham
Author(s):  
Till F. Jakob ◽  
Iva Speck ◽  
Ann-Kathrin Rauch ◽  
Frederike Hassepass ◽  
Manuel C. Ketterer ◽  
...  

Abstract Purpose The aim of the study was to compare long-term results after 1 year in patients with single-sided deafness (SSD) who were fitted with different hearing aids. The participants tested contralateral routing of signals (CROS) hearing aids and bone-anchored hearing systems (BAHS). They were also informed about the possibility of a cochlear implant (CI) and chose one of the three devices. We also investigated which factors influenced the choice of device. Methods Prospective study with 89 SSD participants who were divided into three groups by choosing BAHS, CROS, or CI. All participants received test batteries with both objective hearing tests (speech perception in noise and sound localisation) and subjective questionnaires. Results 16 participants opted for BAHS-, 13 for CROS- and 30 for CI-treatment. The greater the subjective impairment caused by SSD, the more likely patients were to opt for surgical treatment (BAHS or CI). The best results in terms of speech perception in noise (especially when sound reaches the deaf ear and noise the hearing ear), sound localization, and subjective results were achieved with CI. Conclusion The best results regarding the therapy of SSD are achieved with a CI, followed by BAHS. This was evident both in objective tests and in the subjective questionnaires. Nevertheless, an individual decision is required in each case as to which SSD therapy option is best for the patient. Above all, the patient's subjective impairment and expectations should be included in the decision-making process.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Monika Körtje ◽  
Anja Eichenauer ◽  
Timo Stöver ◽  
Uwe Baumann ◽  
Tobias Weissgerber

2019 ◽  
Vol 372 ◽  
pp. 69-79 ◽  
Author(s):  
Ruth Y. Litovsky ◽  
Keng Moua ◽  
Shelly Godar ◽  
Alan Kan ◽  
Sara M. Misurelli ◽  
...  

Author(s):  
Anja Kurz ◽  
Maren Zanzinger ◽  
Rudolf Hagen ◽  
Kristen Rak

Abstract Objective Cochlear implantation has become a well-accepted treatment option for people with single-sided deafness (SSD) and has become a clinical standard in many countries. A cochlear implant (CI) is the only device which restores binaural hearing. The effect of microphone directionality (MD) settings has been investigated in other CI indication groups, but its impact on speech perception in noise has not been established in CI users with SSD. The focus of this investigation was, therefore, to assess binaural hearing effects using different MD settings in CI users with SSD. Methods Twenty-nine experienced CI users with SSD were recruited to determine speech reception thresholds with varying target and noise sources to define binaural effects (head shadow, squelch, summation, and spatial release from masking), sound localization, and sound quality using the SSQ12 and HISQUI19 questionnaires. Outcome measures included the MD settings “natural”, “adaptive”, and “omnidirectional”. Results The 29 participants involved in the study were divided into two groups: 11 SONNET users and 18 OPUS 2/RONDO users. In both groups, a significant head shadow effect of 7.4–9.2 dB was achieved with the CI. The MD setting “adaptive” provided a significant head shadow effect of 9.2 dB, a squelch effect of 0.9 dB, and spatial release from masking of 7.6 dB in the SONNET group. No significant summation effect could be determined in either group with CI. Outcomes with the omnidirectional setting were not significantly different between groups. For both groups, localization improved significantly when the CI was activated and was best when the omnidirectional setting was used. The groups’ sound quality scores did not significantly differ. Conclusions Adaptive directional microphone settings improve speech perception and binaural hearing abilities in CI users with SSD. Binaural effect measures are valuable to quantify the benefit of CI use, especially in this indication group.


2019 ◽  
Vol 41 (4) ◽  
pp. 747-761 ◽  
Author(s):  
Joshua G. W. Bernstein ◽  
Olga A. Stakhovskaya ◽  
Kenneth Kragh Jensen ◽  
Matthew J. Goupell

2010 ◽  
Vol 21 (02) ◽  
pp. 110-120 ◽  
Author(s):  
Ann Perreau ◽  
Richard S. Tyler ◽  
Shelley A. Witt

Background: Many studies have documented the effect of reducing spectral information for speech perception in listeners with normal hearing and hearing impairment. While it is understood that more spectral bands are needed for unilateral cochlear implant listeners to perform well on more challenging listening tasks such as speech perception in noise, it is unclear how reducing the number of spectral bands or electrodes in cochlear implants influences the ability to localize sound or understand speech with spatially separate noise sources. Purpose: The purpose of this study was to measure the effect of reducing the number of electrodes for patients with bilateral cochlear implants on spatial hearing tasks. Research Design: Performance on spatial hearing tasks was examined as the number of bilateral electrodes in the speech processor was deactivated equally across ears and the full frequency spectrum was reallocated to a reduced number of active electrodes. Program parameters (i.e., pulse width, stimulation rate) were held constant among the programs and set identically between the right and left cochlear implants so that only the number of electrodes varied. Study Sample: Nine subjects had used bilateral Nucleus or Advanced Bionics cochlear implants for at least 12 mo prior to beginning the study. Only those subjects with full insertion of the electrode arrays with all electrodes active in both ears were eligible to participate. Data Collection and Analysis: Two test measures were utilized to evaluate the effect of reducing the number of electrodes, including a speech-perception-in-noise test with spatially separated sources and a sound source localization test. Results: Reducing the number of electrodes had different effects across individuals. Three patterns emerged: (1) no effect on localization (two of nine subjects), (2) at least two to four bilateral electrodes were required for maximal performance (five of nine subjects), and (3) performance gradually decreased across conditions as electrode number was reduced (two of nine subjects). For the test of speech perception in spatially separated noise, performance was affected as the number of electrodes was reduced for all subjects. Two categories of performance were found: (1) at least three or four bilateral electrodes were needed for maximum performance (five of seven subjects) and (2) as the number of electrodes were reduced, performance gradually decreased across conditions (two of seven subjects). Conclusion: Large individual differences exist in determining maximum performance using bilateral electrodes for localization and speech perception in noise. For some bilateral cochlear implant users, as few as three to four electrodes can be used to obtain maximal performance on localization and speech-in-noise tests. However, other listeners show a gradual decrement in performance on both tasks when the number of electrodes is reduced.


2012 ◽  
Vol 43 (01) ◽  
Author(s):  
L Timm ◽  
D Agrawal ◽  
M Wittfoth ◽  
R Dengler

2010 ◽  
Vol 10 ◽  
pp. 329-339 ◽  
Author(s):  
Torsten Rahne ◽  
Michael Ziese ◽  
Dorothea Rostalski ◽  
Roland Mühler

This paper describes a logatome discrimination test for the assessment of speech perception in cochlear implant users (CI users), based on a multilingual speech database, the Oldenburg Logatome Corpus, which was originally recorded for the comparison of human and automated speech recognition. The logatome discrimination task is based on the presentation of 100 logatome pairs (i.e., nonsense syllables) with balanced representations of alternating “vowel-replacement” and “consonant-replacement” paradigms in order to assess phoneme confusions. Thirteen adult normal hearing listeners and eight adult CI users, including both good and poor performers, were included in the study and completed the test after their speech intelligibility abilities were evaluated with an established sentence test in noise. Furthermore, the discrimination abilities were measured electrophysiologically by recording the mismatch negativity (MMN) as a component of auditory event-related potentials. The results show a clear MMN response only for normal hearing listeners and CI users with good performance, correlating with their logatome discrimination abilities. Higher discrimination scores for vowel-replacement paradigms than for the consonant-replacement paradigms were found. We conclude that the logatome discrimination test is well suited to monitor the speech perception skills of CI users. Due to the large number of available spoken logatome items, the Oldenburg Logatome Corpus appears to provide a useful and powerful basis for further development of speech perception tests for CI users.


Sign in / Sign up

Export Citation Format

Share Document