scholarly journals An Analysis of the Value Specification Language Applied to the Requirements Engineering Process of Cyber-Physical Systems

2016 ◽  
Vol 49 (30) ◽  
pp. 42-47 ◽  
Author(s):  
Fabíola Gonçalves C. Ribeiro ◽  
Achim Rettberg ◽  
Carlos E. Pereira ◽  
Michel S. Soares
Author(s):  
Tengfei Li ◽  
Jing Liu ◽  
Haiying Sun ◽  
Xiang Chen ◽  
Lipeng Zhang ◽  
...  

AbstractIn the past few years, significant progress has been made on spatio-temporal cyber-physical systems in achieving spatio-temporal properties on several long-standing tasks. With the broader specification of spatio-temporal properties on various applications, the concerns over their spatio-temporal logics have been raised in public, especially after the widely reported safety-critical systems involving self-driving cars, intelligent transportation system, image processing. In this paper, we present a spatio-temporal specification language, STSL PC, by combining Signal Temporal Logic (STL) with a spatial logic S4 u, to characterize spatio-temporal dynamic behaviors of cyber-physical systems. This language is highly expressive: it allows the description of quantitative signals, by expressing spatio-temporal traces over real valued signals in dense time, and Boolean signals, by constraining values of spatial objects across threshold predicates. STSL PC combines the power of temporal modalities and spatial operators, and enjoys important properties such as finite model property. We provide a Hilbert-style axiomatization for the proposed STSL PC and prove the soundness and completeness by the spatio-temporal extension of maximal consistent set and canonical model. Further, we demonstrate the decidability of STSL PC and analyze the complexity of STSL PC. Besides, we generalize STSL to the evolution of spatial objects over time, called STSL OC, and provide the proof of its axiomatization system and decidability.


Author(s):  
Badariah Solemon ◽  
Shamsul Sahibuddin ◽  
Abdul Azim Abd Ghani

Requirements Engineering (RE) is a key discipline in software development, and several standards and models are available to help assess and improve RE processes. However, different standards and models can also help achieve different improvement goals. Thus, organizations are challenged to select these standards and models to best suit their specific context and available resources. This chapter presents a review of selected RE-specific and generic process improvement models that are available in the public domain. The review aims to provide preliminary information that might be needed by organizations in selecting these models. The chapter begins with analyses of how RE maturity is addressed in the Capability Maturity Model Integration (CMMI) for Development. Then, it describes the principal characteristics of, and the assessment and improvement framework applied in four RE-specific process assessment and improvement models: the Requirements Engineering Good Practice Guide (REGPG), the Requirements Engineering Process Maturity(REPM), the Requirements Capability Maturity Model (R-CMM), and the Market-Driven Requirements Engineering Process Model (MDREPM). This chapter also examines the utility and lesson learned of these models.


Sign in / Sign up

Export Citation Format

Share Document