Physical Systems
Recently Published Documents


TOTAL DOCUMENTS

7194
(FIVE YEARS 4403)

H-INDEX

86
(FIVE YEARS 43)

Author(s):  
Ms. Keerti Dixit

Abstract: Cyber-physical systems are the systems that combine the physical world with the world of information processing. CPS involves interaction between heterogeneous components that include electronic chips, software systems, sensors and actuators. It makes the CPS vulnerable to attacks. How to deal with the attacks in CPSs has become a research hotspot. In this paper we have study the Architecture of CPS and various security threats at each layer of the archicture of CPS. We have also developed attack taxonomy for CPS. Keywords: Cyber Physical System, Threat, Attack


2022 ◽  
Vol 109 ◽  
pp. 104636
Author(s):  
Alexander Diedrich ◽  
Oliver Niggemann
Keyword(s):  

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Femi Emmanuel Adeosun ◽  
Ayodeji Emmanuel Oke

Purpose In recent times, the construction industry is being influenced by technological innovations when delivering a better, more effective and efficient desired project, cyber-physical systems (CPSs) offer a coupling of the physical and engineered systems by monitoring, coordinating, controlling and integrating their operations. This study aims to examine the level of awareness of professionals and usage of CPSs for construction projects in Nigerian construction industry. Design/methodology/approach The target population for this study was the professionals in the construction industry consisting Architects, Quantity Surveyors, Engineers and Builders. Data collection was through the use of a structured questionnaire administered to the target population. The data was analyzed by using statistical tools. Findings This study concluded that the construction professionals in the Nigerian construction industry are mostly aware about the heating, ventilation and air conditioning (HVAC) systems, global positioning system, microphone, speakers and camera as the most widely used CPSs in construction industry. HVAC systems was also found to be the mostly adopted technologies in the construction industry. Originality/value This study recommended that platforms that increase the awareness and encourage the usage of CPSs in construction industry should be encouraged by stakeholders concerned with management of construction projects. Such include electronic construction and adoption of blockchain technology.


Author(s):  
Carlos Baladrón ◽  
Andrei Khrennikov

Closed timelike curves (CTCs), non-intuitive theoretical solutions of general relativity field equations can be modelled in quantum mechanics in a way, known as Deutsch-CTCs, to circumvent one of their most paradoxical implications, namely, the so-called grandfather paradox. An outstanding theoretical result of this model is the demonstration that in the presence of a Deutsch-CTC a classical computer would be computationally equivalent to a quantum computer. In the present study, the possible implications of such a striking result for the foundations of quantum mechanics and the connections between classicality and quantumness are explored. To this purpose, a model for fundamental particles that interact in physical space exchanging carriers of momentum and energy is considered. Every particle is then supplemented with an information space in which a probabilistic classical Turing machine is stored. It is analysed whether, through the action of Darwinian evolution, both a classical algorithm coding the rules of quantum mechanics and an anticipation module might plausibly be developed on the information space from initial random behaviour. The simulation of a CTC on the information space of the particle by means of the anticipation module would imply that fundamental particles, which do not possess direct intrinsic quantum features from first principles in this information-theoretic Darwinian approach, could however generate quantum emergent behaviour in real time as a consequence of Darwinian evolution acting on information-theoretic physical systems.


2022 ◽  
Vol 14 (2) ◽  
pp. 900
Author(s):  
Sabrina Oppl ◽  
Christian Stary

Connectivity is key to the latest technologies propagating into everyday life. Cyber-Physical Systems (CPS) and Internet-of-Things (IoT) applications enable users, machines, and technologically enriched objects (‘Things’) to sense, communicate, and interact with their environment. Albeit making human beings’ lives more comfortable, these systems collect huge quantities of data that may affect human privacy and their digital sovereignty. Engaging in control over individuals by digital means, the data and the artefacts that process privacy-relevant data can be addressed by Self-Determination Theory (SDT) and its established instruments. In this paper, we discuss how the theory and its methodological knowledge can be considered for user-centric privacy management. We set the stage for studying motivational factors to improve user engagement in identifying privacy needs and preserving privacy when utilizing or aiming to adapt CPS or IoT applications according to their privacy needs. SDT considers user autonomy, self-perceived competence, and social relatedness relevant for human engagement. Embodying these factors into a Design Science-based CPS development framework could help to motivate users to articulate privacy needs and adopt cyber-physical technologies for personal task accomplishment.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Giacomo De Palma ◽  
Lucas Hackl

We prove that the entanglement entropy of any pure initial state of a bipartite bosonic quantum system grows linearly in time with respect to the dynamics induced by any unstable quadratic Hamiltonian. The growth rate does not depend on the initial state and is equal to the sum of certain Lyapunov exponents of the corresponding classical dynamics. This paper generalizes the findings of [Bianchi et al., JHEP 2018, 25 (2018)], which proves the same result in the special case of Gaussian initial states. Our proof is based on a recent generalization of the strong subadditivity of the von Neumann entropy for bosonic quantum systems [De Palma et al., arXiv:2105.05627]. This technique allows us to extend our result to generic mixed initial states, with the squashed entanglement providing the right generalization of the entanglement entropy. We discuss several applications of our results to physical systems with (weakly) interacting Hamiltonians and periodically driven quantum systems, including certain quantum field theory models.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 563
Author(s):  
Elena Schislyaeva ◽  
Elena Balashova ◽  
Inna Krasovskaya ◽  
Olga Saychenko ◽  
Elena Palkina

Currently, in conditions of Industry 4.0, the use of cyber-physical systems in various fields is becoming widespread. This article is devoted to the problem of estimating CPS sustainability in the context of modern challenges faced by decision makers and IT developers in order to ensure effective proactive business process management using this innovative technology. The purpose of the research is to propose and substantiate a methodology for estimating CPS sustainability to ensure the reliability and strength of its elements, their interrelationships and interaction, as well as the effective functioning and development of this system in conditions of high dynamism and uncertainty of the external environment. In this study, we used methods of integral evaluation, synthesis, expert assessments, dynamic analysis, and systematic approach, and coined the term ‘CPS sustainability’. Our study showed that negative risks, external and internal threats may have a significant adverse impact on CPS sustainability. The reliability of this system should be evaluated on the basis of integrated indicators. The key indicators, reflecting the reliability of maintaining the properties of the CPS in a normal state of its function and further development, were identified. We propose a methodology for estimating CPS sustainability. In general, the presented results form the basis for improving CPS management to increase the effectiveness and efficiency of its functioning and development.


2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Radhya Sahal ◽  
Saeed H. Alsamhi ◽  
Kenneth N. Brown ◽  
Donna O’Shea ◽  
Bader Alouffi

Emerging technologies such as digital twins, blockchain, Internet of Things (IoT), and Artificial Intelligence (AI) play a vital role in driving the industrial revolution in all domains, including the healthcare sector. As a result of COVID-19 pandemic outbreak, there is a significant need for medical cyber-physical systems to adopt these emerging technologies to combat COVID-19 paramedic crisis. Also, acquiring secure real-time data exchange and analysis across multiple participants is essential to support the efforts against COVID-19. Therefore, we have introduced a blockchain-based collaborative digital twins framework for decentralized epidemic alerting to combat COVID-19 and any future pandemics. The framework has been proposed to bring together the existing advanced technologies (i.e., blockchain, digital twins, and AI) and then provide a solution to decentralize epidemic alerting to combat COVID-19 outbreaks. Also, we have described how the conceptual framework can be applied in the decentralized COVID-19 pandemic alerting use case.


Sign in / Sign up

Export Citation Format

Share Document