scholarly journals A Reduced-order Model for Real-time NMPC of Ethanol Steam Reformers

2021 ◽  
Vol 54 (3) ◽  
pp. 103-108
Author(s):  
Pedro Reyero ◽  
Xinwei Yu ◽  
Carlos Ocampo-Martinez ◽  
Richard D. Braatz
Author(s):  
Ngoc-Hien Nguyen ◽  
Karen Willcox ◽  
Boo Cheong Khoo

This work presents an approach to solve stochastic optimal control problems in the application of flow quality management in reservoir systems. These applications are challenging because they require real-time decision-making in the presence of uncertainties such as wind velocity. These uncertainties must be accounted for as stochastic variables in the mathematical model. In addition, computational costs and storage requirements increase rapidly due to the stochastic nature of the simulations and optimisation formulations. To overcome these challenges, an approach is developed that uses the combination of a reduced-order model and an adjoint-based method to compute the optimal solution rapidly. The system is modelled by a system of stochastic partial differential equations. The finite element method together with collocation in the stochastic space provide an approximate numerical solution—the “full model”, which cannot be solved in real-time. The proper orthogonal decomposition and Galerkin projection technique are applied to obtain a reduced-order model that approximates the full model. The conjugate-gradient method with Armijo line-search is then employed to find the solution of the optimal control problem under the uncertainty of input parameters. Numerical results show that the stochastic control yields solutions that are above the bound of the set solutions of the deterministic control. Applying the reduced model to the stochastic optimal control problem yields a speed-up in computational time by a factor of about 80 with acceptable accuracy in comparison with the full model. Application of the optimal control strategy shows the potential effectiveness of this computational modeling approach for managing flow quality.


2007 ◽  
Vol 129 (7) ◽  
pp. 813-824 ◽  
Author(s):  
E. Caraballo ◽  
J. Little ◽  
M. Debiasi ◽  
M. Samimy

This work is focused on the development of a reduced-order model based on experimental data for the design of feedback control for subsonic cavity flows. The model is derived by applying the proper orthogonal decomposition (POD) in conjunction with the Galerkin projection of the Navier-Stokes equations onto the resulting spatial eigenfunctions. The experimental data consist of sets of 1000 simultaneous particle image velocimetry (PIV) images and surface pressure measurements taken in the Gas Dynamics and Turbulent Laboratory (GDTL) subsonic cavity flow facility at the Ohio State University. Models are derived for various individual flow conditions as well as for their combinations. The POD modes of the combined cases show some of the characteristics of the sets used. Flow reconstructions with 30 modes show good agreement with experimental PIV data. For control design, four modes capture the main features of the flow. The reduced-order model consists of a system of nonlinear ordinary differential equations for the modal amplitudes where the control input appears explicitly. Linear and quadratic stochastic estimation methods are used for real-time estimation of the modal amplitudes from real-time surface pressure measurements.


Sign in / Sign up

Export Citation Format

Share Document