Conjugate heat transfer of a rib-roughened internal turbine blade cooling channel using large eddy simulation

2016 ◽  
Vol 61 ◽  
pp. 650-664 ◽  
Author(s):  
Sebastian Scholl ◽  
Tom Verstraete ◽  
Florent Duchaine ◽  
Laurent Gicquel
Author(s):  
Dorian Lahbib ◽  
Antoine Dauptain ◽  
Florent Duchaine ◽  
Franck Nicoud

To improve gas turbine efficiency, engine manufacturers increase both the overall compressor pressure ratio and the turbine inlet temperature, resulting into a higher thermal load of the combustion chamber walls. Cooling systems such as multi-perforated plates are in this context good candidates to lower the thermal constraints on the liners. Such technological devices consist in introducing, through submillimetric holes, a cold air flow into the boundary layer of the chamber wall. Though commonly used in industrial applications, perforations with an angle of deviation, i.e. not aligned with the main flow, have not been studied in most experimental and numerical studies. The deviation angle impacts the liner temperature by modifying the flow structure around the plate. Conjugate heat transfer computations coupling Large Eddy Simulation and heat conduction are performed on streamwise and 45 angled configurations composed of 12 rows at an operating point representative of helicopter combustors to analyze the effect of the deviation. The flow organization around the plate is modified, yielding different heat flux distribution and plate temperature. The major differences are observed within the perforations where the heat flux coefficient increases up to 54% in the configuration with deviation.


2009 ◽  
Vol 337 (6-7) ◽  
pp. 550-561 ◽  
Author(s):  
Florent Duchaine ◽  
Simon Mendez ◽  
Franck Nicoud ◽  
Alban Corpron ◽  
Vincent Moureau ◽  
...  

2021 ◽  
pp. 1-19
Author(s):  
Farah Nazifa Nourin ◽  
Ryoichi S. Amano

Abstract In this study, the internal cooling channel was investigated without any bend. Smooth surfaces and dimpled surfaces were investigated using the different combinations of connecting circular and rectangular holes. The computations were performed using the Large Eddy Simulation (LES) model for Reynolds (Re) numbers from 10,000 to 50,000. A total of six different connecting holes were investigated with a smooth and dimpled surface. A partial spherical dimple with two circular holes showed the highest heat transfer, but it has a higher pressure loss penalty. Even though the Leaf dimple with the rectangle indicated a low heat transfer because of low-pressure drops, it represents the highest efficiency at higher Reynolds numbers.


Sign in / Sign up

Export Citation Format

Share Document