pressure ratio
Recently Published Documents





2022 ◽  
Vol 2022 ◽  
pp. 1-12
Maria Francilene S. Souza ◽  
Juliano G. Penha ◽  
Nair Y. Maeda ◽  
Filomena R. B. G. Galas ◽  
Kelly C. O. Abud ◽  

There is scarce information about the relationships between postoperative pulmonary hemodynamics, inflammation, and outcomes in pediatric patients with congenital cardiac communications undergoing surgery. We prospectively studied 40 patients aged 11 (8–17) months (median with interquartile range) with a preoperative mean pulmonary arterial pressure of 48 (34–54) mmHg who were considered to be at risk for postoperative pulmonary hypertension. The immediate postoperative pulmonary/systemic mean arterial pressure ratio (PAP/SAPIPO, mean of first 4 values obtained in the intensive care unit, readings at 2-hour intervals) was correlated directly with PAP/SAP registered in the surgical room just after cardiopulmonary bypass ( r = 0.68 , p < 0.001 ). For the entire cohort, circulating levels of 15 inflammatory markers changed after surgery. Compared with patients with PAP / SA P IPO ≤ 0.40 ( n = 22 ), those above this level ( n = 18 ) had increased pre- and postoperative serum levels of granulocyte colony-stimulating factor ( p = 0.040 ), interleukin-1 receptor antagonist ( p = 0.020 ), interleukin-6 ( p = 0.003 ), and interleukin-21 ( p = 0.047 ) (panel for 36 human cytokines) and increased mean platelet volume ( p = 0.018 ). Using logistic regression analysis, a PAP / SA P IPO > 0.40 and a heightened immediate postoperative serum level of macrophage migration inhibitory factor (quartile analysis) were shown to be predictive of significant postoperative cardiopulmonary events (respective hazard ratios with 95% CIs, 5.07 (1.10–23.45), and 3.29 (1.38–7.88)). Thus, the early postoperative behavior of the pulmonary circulation and systemic inflammatory response are closely related and can be used to predict outcomes in this population.

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 583
Suleyman Emre Ak ◽  
Sertac Cadirci

In this study, the effect of suction flow control on a centrifugal compressor at operation and stall flow rates was investigated using computational fluid dynamics (CFD). The compressor geometry was reconstructed from available open source profile data and the CFD analyses have been performed on this geometry using the appropriate mesh. To validate the CFD results, the compressor performance line was acquired and compared with the experimental results obtained at the design rotational speed. Then, suction flow control was employed at various suction slot positions with different suction flow rates to improve the performance of the compressor at operation and stall flow rates. As a result of the suction flow control trials, 0.85% increase in pressure ratio and 0.8% increase in adiabatic efficiency were achieved while the compressor was running at operation flow rate. The performance improvements corresponding to the stall flow rate of the compressor were 2.5% increase in pressure ratio and 2% increase in adiabatic efficiency.

Chenxing Hu ◽  
Xue Li ◽  
Siyu Zheng

The increasing demand for compression systems with high pressure ratio and wide safety margin has set new prerequisites for designers to meet the industrial needs without increasing the manufacturing costs excessively. In this work, the turbulent stability of the vaneless diffuser of the centrifugal compressor was analyzed. Unsteady Reynolds-averaged numerical simulations of the isolated diffuser and full annular diffuser with or without circumferential asymmetric boundary conditions downstream were performed. And a continuous adjoint approach was adopted, which is rarely applied in the stability analysis of compressor flow. Then, the origin of instability under different inflow and outflow conditions was sought with a sensitivity analysis. The prediction of the growth rate reveals that the flow near the shroud dominates the global stability of the diffuser. When connected with an impeller in the upstream direction, the most unstable region is localized at the backflow regions near the outlet. The wave number, however, is altered under the impact of the jet-wake flow. When connected to a circumferential asymmetric condition, the structural sensitivity of the vaneless diffuser with a radius ratio of 1.53 indicates that the interaction between the inlet reverse flow and outlet backflow is responsible for the occurrence of stall. The most unstable regions are localized at the region 90°–135° away from the volute tongue. The present work mainly contributes to the instabilities identification with novel sensitivity methods under asymmetric boundary conditions.

Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 53
Xueying Li ◽  
Peng Ren ◽  
Zhe Zhang ◽  
Xiaohan Jia ◽  
Xueyuan Peng

The pressure-volume diagram (p−V diagram) is an established method for analyzing the thermodynamic process in the cylinder of a reciprocating compressor as well as the fault of its core components including valves. The failure of suction/discharge valves is the most common cause of unscheduled shutdowns, and undetected failure may lead to catastrophic accidents. Although researchers have investigated fault classification by various estimation techniques and case studies, few have looked deeper into the barriers and pathways to realize the level determination of faults. The initial stage of valve failure is characterized in the form of mild leakage; if this is identified at this period, more serious accidents can be prevented. This study proposes a fault diagnosis and severity estimation method of the reciprocating compressor valve by virtue of features extracted from the p−V diagram. Four-dimensional characteristic variables consisting of the pressure ratio, process angle coefficient, area coefficient, and process index coefficient are extracted from the p−V diagram. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were applied to establish the diagnostic model, where PCA realizes feature amplification and projection, then LDA implements feature dimensionality reduction and failure prediction. The method was validated by the diagnosis of various levels of severity of valve leakage in a reciprocating compressor, and further, applied in the diagnosis of two actual faults: Mild leakage caused by the cracked valve plate in a reciprocating compressor, and serious leakage caused by the deformed valve in a hydraulically driven piston compressor for a hydrogen refueling station (HRS).

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 420
Zhihua Lin ◽  
Zhitao Zuo ◽  
Wei Li ◽  
Jianting Sun ◽  
Xin Zhou ◽  

Relying on a closed test rig of a high-power intercooling centrifugal compressor for compressed air energy storage (CAES), this study measured the static pressure and static temperature at different radii on the static wall of the impeller backside cavity (IBC) under variable rotating speeds. Simultaneously, the coupled computations of all mainstream domains with IBC or not were used for comparative analysis of the aerodynamic performances of the compressor and the internal flow field in IBC. The results show that IBC has a significant impact on coupling characteristics including pressure ratio, efficiency, torque, shaft power, and axial thrust of the centrifugal compressor. The gradients of radial static pressure and static temperature in IBC both increase with the decrease of mainstream flow or the increase of rotating speed, whose distributions are different under variable rotating speeds due to the change of the aerodynamic parameters of mainstream.

2022 ◽  
Fereshteh Rahmani ◽  
Seyed Mahdi Hosseini

Abstract Liquefaction occurs in a loose and saturated sand layer, induces quite large damages to infrastructures, the importance of liquefaction mitigation has been emphasized to minimize earthquake disasters for many years. Many kinds of ground improvement techniques based on various improvement principles have been developed for liquefaction mitigation. Among them, deep mixing method with grid pattern was developed for liquefaction mitigation in the 1990s, where the grid of stabilized column walls functions to restrict the generation of excess pore pressure by confining the soil particle movement during earthquake. In this study, a parametric study of the grid-form deep mixing wall is performed using numerical modeling with GID+OpenSees interface V2.6.0. The finite element method with a three-dimensional analysis model can be used to estimate the foundation settlement over liquefiable soil layer. The validity of the developed model was evaluated by comparing the results obtained from the model with the results of numerical studies and the experimental centrifuge test to investigate the effect of deep mixing grid wall on the settlement and generation of excess pore pressure ratio of liquefiable soil. Based on the analysis, the settlement for improved soil was 69% smaller than the settlement for unimproved soil. The results also indicated that the grid wall space, relative density, and stiffness ratio between soil-cement columns and enclosed soil plays an important role in the occurrence of liquefaction and volumetric strains.

2022 ◽  
Vol 2163 (1) ◽  
pp. 012004
F Moreno-Gamboa ◽  
J C Acevedo-Paez ◽  
D Sanin-Villa

Abstract A thermodynamic model is presented for evaluation of a solar hybrid gas-turbine power plant. The model uses variable ambient temperature and estimates direct solar radiation at different day times. The plant is evaluated in Barranquilla, Colombia, with a solar concentration system and a combustion chamber that burns natural gas. The hybrid system enables to maintain almost constant the power output throughout day. The model allows optimizing the different plant parameters and evaluating maximum performance point. This work presents pressure ratio ranges where the maximum values of overall efficiency, power output, thermal engine efficiency and fuel conversion rate are found. The study is based on the environmental conditions of Barranquilla, Colombia. The results obtained shows that optimum pressure ratio range for power output and overall efficiency is between 6.4 and 8.3, when direct solar radiation its maximum at noon. This thermodynamic analysis is necessary to design new generations of solar thermal power plants.

2021 ◽  
pp. 146808742110663
Ibrahim Eryilmaz ◽  
Huayang Li ◽  
Vassilios Pachidis ◽  
Panagiotis Laskaridis ◽  
Zi-Qiang Zhu ◽  

This manuscript discusses the operation of an electrically driven fan for a hybrid-electric propulsion system for BAe-146 aircraft. The thrust requirement is fed into an integrated cycle and aerodynamic design tool for the sizing of a ducted fan as one of the main propulsors, podded under the wing as a replacement for a turbofan engine. The electric motor design is initiated with the torque and speed requirements and with the dimensional constraints arising from the driven fan geometry. The fan operation and aerodynamic design are derived by changing the fan pressure ratio and hub-to-tip ratio to obtain a 2-D design space. Surface-mounted permanent magnet electric motor designs are mapped on the 2-D fan design space. The design and operational flexibility of the system is investigated through three scenarios. In the first scenario, the aircraft rate of climb is changed to downsize the electric motor. In the second scenario, the electric motor rated frequency is changed to increase the power density and in the third scenario the electric motor current density is changed for the same purpose. The investigated three scenarios provide design and operational guidelines for reducing the weight of the electric motor for a direct drive application.

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 159
Tien-Dung Vuong ◽  
Kwang-Yong Kim

The present work performed a comprehensive investigation to find the effects of a dual-bleeding port recirculation channel on the aerodynamic performance of a single-stage transonic axial compressor, NASA Stage 37, and optimized the channel’s configuration to enhance the operating stability of the compressor. The compressor’s performance was examined using three parameters: The stall margin, adiabatic efficiency, and pressure ratio. Steady-state three-dimensional Reynolds-averaged Navier–Stokes analyses were performed to find the flow field and aerodynamic performance. The results showed that the addition of a bleeding channel increased the recirculation channel’s stabilizing effect compared to the single-bleeding channel. Three design variables were selected for optimization through a parametric study, which was carried out to examine the influences of six geometric parameters on the channel’s effectiveness. Surrogate-based design optimization was performed using the particle swarm optimization algorithm coupled with a surrogate model based on the radial basis neural network. The optimal design was found to increase the stall margin by 51.36% compared to the case without the recirculation channel with only 0.55% and 0.28% reductions in the peak adiabatic efficiency and maximum pressure ratio, respectively.

Sign in / Sign up

Export Citation Format

Share Document