inlet temperature
Recently Published Documents


TOTAL DOCUMENTS

2585
(FIVE YEARS 663)

H-INDEX

41
(FIVE YEARS 7)

Lubricants ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 11
Author(s):  
Edward H. Smith

The active control of hydrodynamic bearings is beginning to receive more attention in the pursuit of lower power losses and reduced maintenance. This paper presents a method by which, from simple measurements, rich information can be deduced from a running bearing that can used to modify the operating parameters of the unit. The bearing is a line-pivot, unidirectional, steadily loaded, directly lubricated tilting pad thrust bearing. This control is achieved by designing an Observer whose inputs include the output measurement(s) from the bearing. The Observer is, in some ways, an inverse model of the bearing (or Plant) that runs in parallel to the bearing and estimates the states of the bearing, such as the applied load, pivot height, minimum film thickness, maximum temperature, effective temperature and power loss. These estimated parameters can then be used in a control algorithm to modify bearing parameters such as inlet temperature or pivot location. It is demonstrated that disturbances in the load on the bearing can be detected simply by measuring a representative temperature in the bearing or changes in pivot height. Appropriate corrective action can then be employed. Whilst only steady-state operation is considered, the method could be developed to study time-varying situations.


2022 ◽  
Vol 12 (2) ◽  
pp. 646
Author(s):  
Chaimae El Fouas ◽  
Nelu Cristian Cherecheș ◽  
Sebastian Valeriu Hudișteanu ◽  
Bekkay Hajji ◽  
Emilian Florin Țurcanu ◽  
...  

Photovoltaic/thermal (PV/T) systems are innovative cogeneration systems that ensure the cooling of photovoltaic (PV) backside and simultaneous production of electricity and heat. However, an effective cooling of the PV back is still a challenge that affects electrical and thermal performance of the PV/T system. In the present work, a PV/T numerical model is developed to simulate the heat flux based on energy balance implemented in MATLAB software. The numerical model is validated through the comparison of the three-layer PV model with the NOCT model and tested under the operation conditions of continental temperate climate. Moreover, the effect of velocity and water film thickness as important flow parameters on heat exchange and PV/T production is numerically investigated. Results revealed that the PV model is in good agreement with the NOCT one. An efficient heat transfer is obtained while increasing the velocity and water film thickness with optimal values of 0.035 m/s and 7 mm, respectively, at an inlet temperature of 20 °C. The PV/T system ensures a maximum thermal power of 1334.5 W and electrical power of 316.56 W (258.8 W for the PV). Finally, the comparison between the PV and PV/T system under real weather conditions showed the advantage of using the PV/T.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 447
Author(s):  
Qiang Chen ◽  
Mingming Mao ◽  
Min Gao ◽  
Yongqi Liu ◽  
Junrui Shi ◽  
...  

The catalytic combustion has the advantage of lower auto-ignition temperature and helps to expand the combustible limit of lean premixed gas. However, the intake needs to be preheated to certain temperature commonly through an independent heat exchanger. Similar to the principles of non-catalytic RTO combustion, this paper presents a similar approach whereby the combustion chamber is replaced by a catalytic combustion bed. A new catalytic reactor integrated with a heat recuperator is designed to enhance the heat recirculation effect. Using a two-dimensional computational fluid dynamics model, the performance of the reactor is studied. The reaction performances of the traditional and compact reactors are compared and analyzed. Under the same conditions, the compact reactor has better reaction performance and heat recirculation effect, which can effectively decrease the ignition temperature of feed gas. The influences of the inlet velocity, the inlet temperature, the methane concentration, and the thermal conductivity of porous media on the reaction performance of integrated catalytic reactor are studied. The results show that the inlet velocity, inlet temperature, methane concentration, and thermal conductivity of porous media materials have important effects on the reactor performance and heat recirculation effect, and the thermal conductivity of porous media materials has the most obvious influence. Moreover, the reaction performance of multiunit integrated catalytic reactor is studied. The results show that the regenerative effect of multiunit integrated catalytic reactor is further enhanced. This paper is of great significance to the recycling of low calorific value gas energy and relieving energy stress in the future.


Author(s):  
BHARATH KUMAR A. ◽  
GIRENDRA KUMAR GAUTAM ◽  
SYED SALMAN B.

Objective: The purpose of this research is to find the best way for designing carvedilol pulsatile drug delivery system capsules. Methods: The research paves the way to improve the method of preparing carvedilol pulsatile drug delivery by adjusting critical material attributes (CMA) such as coating polymer concentration, critical process parameters (CPP) such as inlet temperature and atomizing air pressure, and their impact on critical quality attributes (CQA) like particle size (PS in nm), entrapment efficiency in percentage (% EE) and amount of drug delivered in percent (%ADR) at 12 h in the carvedilol pulsatile pellets filled capsules by applying the Box-Behnken design. By varying the polymer concentration and process parameters, nearly 15 formulations were created. Results: Based on the influence of CMA, CPP on CQA, the formulation CP13 was determined to be the most optimized formulation among the 15 formulations. The optimized levels of CMA were found to be-1 level of coating polymer concentration and CPP was found to be-1 level of inlet temperature, 0 level of atomizing air pressure and it optimized CQA like PS was found to be 1017.5±8.4 nm, % EE was found to be 96.8±2.8 %, % ADR at 12 h was found to be 88.4±3.4 %. Carvedilol Pulsatile drug delivery system was designed by using optimized fluidized bed coater in order to decrease the usage of attributes, decrease the productivity cost and enhance the usage of specific attributes at fixed concentration for further manufacturing scale. Conclusion: By the current results it was concluded that the optimized CMA and CPP that shown in the results are the suitable attributes for the best formulation of carvedilol pulsatile drug delivery system capsules.


Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 72
Author(s):  
Yanju Li ◽  
Dongxu Li ◽  
Zheshu Ma ◽  
Meng Zheng ◽  
Zhanghao Lu

Since the high temperature proton exchange membrane fuel cells (HT-PEMFC) stack require a range of auxiliary equipments to maintain operating conditions, it is necessary to consider operation of related components in the design of HT-PEMFC systems. In this paper, a thermodynamic model of a vehicular HT-PEMFC system using phosphoric acid doped polybenzimidazole membrane is developed. The power distribution and exergy loss of each component are derived according to thermodynamic analysis, where the stack and heat exchanger are the two components with the greatest exergy loss. In addition, ecological functions and improvement potentials are proposed to evaluate the system performance better. On this basis, the effects of stack inlet temperature, pressure, and stoichiometric on system performance are analyzed. The results showed that the energy efficiency, exergy efficiency and net output power of the system achieved the maximum when the inlet gases temperature is 406.1 K. The system performance is better when the cathode inlet pressure is relatively low and the anode inlet pressure is relatively high. Moreover, the stoichiometry should be reduced to improve the system output performance on the basis of ensuring sufficient gases reaction in the stack.


Author(s):  
Juan Fang ◽  
Qiangang Zheng ◽  
Haibo Zhang

The on-board dynamic model is the basis of numerous advanced control technologies for modern aero-engine, and its accuracy and real-time performance are two crucial indicators. Since the simulation accuracy declines with the deviation from the ground point of the conventional compact propulsion system dynamic model (CPSDM), an improved CPSDM (ICPSDM) based on deep neural network is proposed in this paper. First, the K-means algorithm is utilized to get the sampling point, and the engine simulation data is collected in the cluster centers. Then, the batch normalize deep neural network (BN-DNN) is applied to build the ICPSDM, which can shorten the training time tremendously. The simulation results show that, in the same simulation environment, the accuracy of turbine inlet temperature T 4 , fan surge margin SMc, thrust F, and specific fuel consumption SFC calculated by ICPSDM are 11.04, 3.17, 1.89, and 1.98 times of CPSDM, respectively, at off-design point, and the real-time performance of ICPSDM is more than 30 times faster than the component-level model.


Fluids ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 21
Author(s):  
Daniel Rosell ◽  
Tomas Grönstedt

The possibility of extracting large amounts of electrical power from turbofan engines is becoming increasingly desirable from an aircraft perspective. The power consumption of a future fighter aircraft is expected to be much higher than today’s fighter aircraft. Previous work in this area has concentrated on the study of power extraction for high bypass ratio engines. This motivates a thorough investigation of the potential and limitations with regards to performance of a low bypass ratio mixed flow turbofan engine. A low bypass ratio mixed flow turbofan engine was modeled, and key parts of a fighter mission were simulated. The investigation shows how power extraction from the high-pressure turbine affects performance of a military engine in different parts of a mission within the flight envelope. An important conclusion from the analysis is that large amounts of power can be extracted from the turbofan engine at high power settings without causing too much penalty on thrust and specific fuel consumption, if specific operating conditions are fulfilled. If the engine is operating (i) at, or near its maximum overall pressure ratio but (ii) further away from its maximum turbine inlet temperature limit, the detrimental effect of power extraction on engine thrust and thrust specific fuel consumption will be limited. On the other hand, if the engine is already operating at its maximum turbine inlet temperature, power extraction from the high-pressure shaft will result in a considerable thrust reduction. The results presented will support the analysis and interpretation of fighter mission optimization and cycle design for future fighter engines aimed for large power extraction. The results are also important with regards to aircraft design, or more specifically, in deciding on the best energy source for power consumers of the aircraft.


Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 79
Author(s):  
Kaigang Gong ◽  
Bingguo Zhu ◽  
Bin Peng ◽  
Jixiang He

In this work, the heat transfer characteristics of supercritical pressure CO2 in vertical heating tube with 10 mm inner diameter under high mass flux were investigated by using an SST k-ω turbulent model. The influences of inlet temperature, heat flux, mass flux, buoyancy and flow acceleration on the heat transfer of supercritical pressure CO2 were discussed. Our results show that the buoyancy and flow acceleration effect based on single phase fluid assumption fail to explain the current simulation results. Here, supercritical pseudo-boiling theory is introduced to deal with heat transfer of scCO2. ScCO2 is treated to have a heterogeneous structure consisting of vapor-like fluid and liquid-like fluid. A physical model of scCO2 heat transfer in vertical heating tube was established containing a gas-like layer near the wall and a liquid-like fluid layer. Detailed distribution of thermophysical properties and turbulence in radial direction show that scCO2 heat transfer is greatly affected by the thickness of gas-like film, thermal properties of gas-like film and turbulent kinetic energy in the near-wall region. Buoyancy parameters Bu < 10-5, Bu* < 5.6 × 10−7 and flow acceleration parameter Kv < 3 × 10−6 in this paper, which indicate that buoyancy effect and flow acceleration effect has no influence on heat transfer of scCO2 under high mass fluxes. This work successfully explains the heat transfer mechanism of supercritical fluid under high mass flux.


Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 47
Author(s):  
Chenghu Zhang ◽  
Dezhi Zou ◽  
Xinpeng Huang ◽  
Weijun Lu

To reduce operating costs on the basis of ensuring the desulfurization efficiency in a wet flue gas desulfurization system, a theoretical model was put forward, and a calculation method was set up. Correlations between reaction zone height, flue gas inlet temperature, slurry inlet temperature, gas–liquid ratio and desulfurization efficiency were found. Based on the heat and mass transfer model of the spray tower, the integrated system of desulfurization tower and open slurry pool and the flue gas desulfurization-waste heat recovery system were established. Additionally, the effect of outdoor wind speed, heat dissipation area and ambient temperature on the slurry equilibrium temperature in the integrated system were analyzed. The results show the slurry equilibrium temperature of the desulfurization system is negatively correlated with outdoor wind speed and heat dissipation area, and positively related to ambient temperature. The slurry temperature is the main factor that affects the performance of the wet flue gas desulfurization system. Finally, based on the Harbin heating group Hua Hui hotspot energy-saving reconstruction project, a case analysis was conducted, which proves the flue gas desulfurization-waste heat recovery system is profitable, energy saving and a suitable investment project.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Jianwen Zhang ◽  
Fan Zhang ◽  
Yan Li ◽  
Yahui Zhao ◽  
Gang Sheng

In view of the corrosion failure of a high-pressure heat exchanger in a diesel hydrogenation unit, the formation mechanism of ammonium chloride in a multiphase flow system is investigated in this article. Numerical simulation is carried out by user defined function (UDF) on the process of adding source of mass transfer in computational fluid dynamics (CFD) solvers. The distribution characteristics of ammonium chloride are illustrated by the parameters including crystallization temperature of ammonium chloride, volume fraction of ammonium chloride, and mass transfer rates of NH3 and HCl, and the causes of corrosion cracking in the U-shaped bend of the heat exchanger are discussed. The results show that there is a great risk of ammonium chloride deposition in the heat exchanger from 4.5 m away from the outlet of the second pass. The crystallization area in the tube gradually expands from the wall to the center along the flow direction, and the crystallization rate is higher near the tube wall. The field sampling test results show that the corrosion cracking is hydrogen-induced cracking, which is due to the existence of large amount of hydrogen, high impacting force, excessive flow rate, and the risk of ammonium chloride particle erosion at the U-bend. In order to alleviate the corrosion of ammonium chloride deposition, some improvement measures are put forward, such as raising the inlet temperature of the tube side to 215 °C and increasing the water injection by 30%, which play an important role in decreasing the formation of ammonium chloride in the heat exchange system.


Sign in / Sign up

Export Citation Format

Share Document