Turbulent flow and heat transfer enhancement in rectangular channels with novel cylindrical grooves

Author(s):  
Jian Liu ◽  
Gongnan Xie ◽  
Terrence W. Simon
Author(s):  
Feng Zhang ◽  
Xinjun Wang ◽  
Jun Li ◽  
Daren Zheng ◽  
Junfei Zhou

The present work represents a numerical study on the flow and heat transfer characteristics in rectangular channels with protrusion-grooved turbulators. The Reynolds averaged Navier-Stokes equations, coupled with SST turbulence model, are adopted and solved. In this paper, six geometric protrusion shapes (circular, rectangular, triangular, trapezoidal, circular with leading round concave and circular with trailing round concave) are selected to perform the study. The flow structure, heat transfer enhancement, friction factor as well as thermal performance factor of the rectangular channel fitted with combined groove and different protrusions have been obtained at the Reynolds number ranging from 5000 to 20000. The results indicate that the protrusion shapes affect the velocity distribution near the groove surface. The case of circular protrusion with leading round concave provides the highest overall heat transfer enhancement, while it also causes the highest pressure loss penalty. The case of rectangular protrusion has the lowest overall heat transfer enhancement with high pressure loss penalty. The case of circular protrusion has similar overall heat transfer enhancement with cases of trapezoidal protrusion as well as circular protrusion with trailing round concave, but the pressure loss penalty of the case of circular protrusion is the lowest. In addition, the best overall thermal performance can be observed for circular protrusion-grooved channel.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Gongnan Xie ◽  
Jian Liu ◽  
Weihong Zhang ◽  
Giulio Lorenzini ◽  
Cesare Biserni

Repeated ribs are often employed in the midsection of internal cooling passages of turbine blades to augment the heat transfer by air flowing through the internal ribbed passages. Though the research of flow structure and augmented heat transfer inside various ribbed passages has been well conducted, previous works mostly paid much attention to the influence of rib topology (height-to-pitch, blockage ratio, skew angle, rib shape). The possible problem involved in the usage of ribs (especially with larger blockage ratios) is pressure loss penalty. Thus, in this case, the design of truncated ribs whose length is less than the passage width might fit the specific cooling requirements when pressure loss is critically considered. A numerical study of truncated ribs on turbulent flow and heat transfer inside a passage of a gas turbine blade is performed when the inlet Reynolds number ranges from 8000 to 24,000. Different truncation ratio (truncated-length to passage-width) rib geometries are designed and then the effect of truncation ratio on the pressure drop and heat transfer enhancement is observed under the condition of constant total length. The overall performance characteristics of various truncated rib passages are also compared. It is found that the heated face with a rib that is truncated 12% in length in the center (case A) has the highest heat transfer coefficient, while the heated face with a rib that is truncated 4% at three locations over its length, in the center and two sides (case D), has a reduced pressure loss compared with passages of other designs and provides the lowest friction factors. Although case A shows larger heat transfer augmentation, case D can be promisingly used to augment side-wall heat transfer when the pressure loss is considered and the Reynolds number is relatively large.


Author(s):  
Peng Zhang ◽  
Yu Rao ◽  
Yanlin Li

This paper presents a numerical study on turbulent flow and heat transfer in the channels with a novel hybrid cooling structure with miniature V-shaped ribs and dimples on one wall. The heat transfer characteristics, pressure loss and turbulent flow structures in the channels with the rib-dimples with three different rib heights of 0.6 mm, 1.0 mm and 1.5 mm are obtained for the Reynolds numbers ranging from 18,700 to 60,000 by numerical simulations, which are also compared with counterpart of a pure dimpled and pure V ribbed channel. The results show that the overall Nusselt numbers of the V rib-dimple channel with the rib height of 1.5 mm is up to 70% higher than that of the channels with pure dimples. The numerical simulations show that the arrangement of the miniature V rib upstream each dimple induces complex secondary flow near the wall and generates downwashing vortices, which intensifies the flow mixing and turbulent kinetic energy in the dimple, resulting in significant improvement in heat transfer enhancement and uniformness.


2013 ◽  
Vol 5 ◽  
pp. 256839
Author(s):  
Somchai Wongwises ◽  
Afshin J. Ghajar ◽  
Kwok-wing Chau ◽  
Octavio García Valladares ◽  
Balaram Kundu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document