pressure loss
Recently Published Documents


TOTAL DOCUMENTS

1756
(FIVE YEARS 364)

H-INDEX

37
(FIVE YEARS 6)

2022 ◽  
pp. 1-44
Author(s):  
Yong Luan ◽  
Yu Rao ◽  
Kai Wang ◽  
Weilong Wu

Abstract This paper presents a comparative experimental and numerical study of the heat transfer and pressure loss in a swirl multi-pass channel with tangential jet slots, and another baseline multi-pass channel with 180-deg U-bends as comparison baseline has also been investigated. Transient liquid crystal thermography is used to obtain the detailed heat transfer distribution on the internal surfaces of the multi-pass serpentine channels. The heat transfer patterns in the swirl multi-pass channel are quite different from that of the baseline multi-pass channel. Compared with the baseline multi-pass channel, the experimental globally averaged Nusselt number ratios of the last two passes in the swirl multi-pass channel can be increased by up to 82.9%, 104.8% and 124.6% for the Reynolds numbers 20,000, 40,000 and 60,000, respectively. The high and circumferentially uniform heat transfer is mainly due to the large-scale swirling flow induced by the tangential slots. More detailly, the large-scale swirling flow impinges onto the surface and further induces high tangential velocity near the wall, which destroys the boundary layer flow and thus improves the heat transfer rates at the wall. However, the notable pressure loss of the swirl multi-pass channel should be further controlled reasonably, which is about 5.4 times that of the baseline multi-pass channel. As supplements to the experiments, three-dimensional numerical computations provide more insights into the turbulent flow structure in the two kinds of multi-pass serpentine channels.


2022 ◽  
Vol 9 ◽  
Author(s):  
C. Liu ◽  
Y. Li ◽  
Z. Zhou ◽  
P. Wiśniewski

Under the influence of many factors, the surface roughness of the cascade will change during turbomachinery operation, which will affect the boundary layer flow of the cascade. In this article, the effects of cascade surface roughness on boundary layer flow under variable conditions are analyzed by experiments and numerical simulation. The results show that with the increase of roughness, the total pressure loss coefficient of the cascade decreases first and then increases. The larger the Reynolds number is, the greater the total pressure loss coefficient is, and the sensitive area of loss change is changed. In the sensitive area, the roughness has a greater influence on cascade loss. There are separation bubbles at the suction front edge of smooth cascades. With the increase of roughness, the degree of turbulence increases, and the transition process is accelerated. When the roughness is between 74 and 150 μm, the separation bubble disappears and the separation loss decreases. In conclusion, the aerodynamic loss of the cascade increases with the increase of roughness, and the cascade efficiency decreases. However, roughness can restrain the flow separation and reduce the separation loss. The two have gone through a process of one and the other. When the roughness is 74 μm, the displacement thickness, momentum thickness, and shape factor at the back of the cascade are the minimum.


2022 ◽  
Vol 955 (1) ◽  
pp. 012029
Author(s):  
C S Silvia ◽  
M Safriani ◽  
M Ikhsan ◽  
U Rauza

Abstract Distribution services have not been running optimally at PDAM Tirta Meulaboh, that This study aims to determine the level of pressure loss in the PDAM’s clean water pipe network. The method used in this research is a quantitative descriptive survey method supported by primary data and secondary data. Calculation of the amount of pressure loss using the hardy cross method. The results showed that the observed value of discharge with the highest water consumption was at 18:00 WIB at 0.172 m3 / person, while for the lowest use was at 14:00 WIB at 0.119 m3 / person. It can be concluded that this time is the peak time for water consumption. High-pressure water where the maximum average is 0.00000599 m, because high pressure is not adequate. The maximum loss of high pressure is found in the loop (VII) of 2.57025 m or 0.257025 atm, for the minimum pressure there is in the loop (VI) of - 0.00024 m or -0.000024 atm. It is necessary to re-evaluate the distribution network system by PDAM such as surveys to find out the causes of high water pressure losses to customers such as surveys for water leaks in distribution pipes, replacing old pipes.


2021 ◽  
Vol 31 (4) ◽  
pp. 559-576
Author(s):  
Aleksandr I. Petrashev ◽  
Larisa G. Knyazeva

Introduction. Anticorrosion protection of agricultural machinery working elements is provided through using pneumatic application of thickened preservatives with heating. For this purpose, a wire coil is inserted inside the preservative-supply hose and connected to a current source. It is known that the wire thickness and the coil pitch affect the hydraulic resistance to fluid flow. However, it has not been established how the diameter of the coil insert and its heating affect the flow capacity of the flexible hose channel. The purpose of the research is to increase the capacity of a flexible hose with an electrical-heater coil. For this purpose, it is necessary to determine its geometric parameters minimizing the hydraulic resistance to the thickened preservative flow and reducing the energy consumption for heating the material in the hose. Materials and Methods. It is proposed to investigate two electrical-heater coils of the same length, but of different diameter, made of steel welding wire pieces of equal length. There was developed a stand to study the influence of the inserted coil parameters on the hose hydraulic resistance. The stand was used to determine pressure losses in hoses with coils and in smooth hoses when used engine oil and thickened preservative flow through them. The flow capacity of the hose with cold and heated coils was estimated. Results. The method of heating the preservative in the hose wall layer is justified. At the same time, its flow capacity increases one and a half times with less energy consumption (2.4 times) than when heating the preservative in the central part of the hose. Under laminar flow mode, the pressure loss in the hose is 2 times lower when the coil is equal to 0.85 of the hose channel diameter than when the coil is equal to 0.67 of the channel diameter. Discussion and Conclusion. The research found the rational way of placing the electrical coil near the heated hose channel wall. At low air temperature, the reduction of the thickened preservative viscosity by heating in the hose helps to decrease the pressure loss up to 50% and increase its flow capacity by 1.4‒2.0 times. The use of a electrical-heater coil in the hose with thickened preservative will minimize energy consumption when preserving equipment on open storage sites.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Lihan Li ◽  
Xin Li ◽  
Jiang Qin ◽  
Silong Zhang ◽  
Wen Bao

In order to extend the cooling capacity of thermal protection in various advanced propulsion systems, dimple as an effective heat transfer enhancement device with low-pressure loss has been proposed in regenerative cooling channels of a scramjet. In this paper, numerical simulation is conducted to investigate the effect of the dimple depth-diameter ratio on the flow and heat transfer characteristics of supercritical hydrocarbon fuel inside the cooling channel. The thermal performance factor is adopted to evaluate the local synthetically heat transfer. The results show that increasing the dimple depth-diameter ratio h / d p can significantly reduce wall temperature and enhance the heat transfer inside the cooling channel but simultaneously increase pressure loss. The reason is that when h / d p is rising, the recirculation zones inside dimples would be enlarged and the reattachment point is moving downstream, which enlarge both the high Nu area at rear edge of dimple and the low Nu area in dimple front. In addition, when fluid temperature is nearer the fluid pseudocritical temperature, local acceleration caused by dramatic fluid property change would reduce the increment of heat transfer and also reduce pressure loss. In this study, the optimal depth-diameter ratio of dimple in regenerative cooling channel of hydrocarbon fueled is 0.2.


Author(s):  
Md Insiat Islam Rabby ◽  
◽  
Farzad Hossain ◽  
Raihan M M ◽  
Afrina Khan Piya ◽  
...  

Enhancing the heat transfer rate is highly required to remove excessive heat load from the heat transfer apparatus, which may cause massive damage to the equipment. Thus, increment of heat transfer area is one of the prime solutions for this issue. The increment of heat transfer area can be done by enhancing the pipe wall and incorporating nanoparticles with working fluids because nanoparticles showed much faster heat dispersion due to a vast surface area for heat transfer and increased thermal conductivity. Also, small molecules of nanoparticles are allowed for free movement and thus micro-convection, promoting high thermal conductivity. Higher thermal conductivity is mainly the result of a higher heat transfer rate. Therefore, in this study, a saw-type corrugated tube was considered along with the SiC-water nanofluid as the working fluid to determine the improvement of laminar convective heat transfer in terms of the Nusselt number, heat transfer coefficient, and pressure loss. The result demonstrated that by increasing the Reynolds number, the Nusselt number, heat transfer coefficient, and pressure loss were increased significantly with the enhancement of SiC-water concentration. At a Reynolds number of 1200, the maximum increment of Nusselt number in comparison to the base fluid was 9.15% when the corrugated pipe was considered. Meanwhile, the maximum improvement of heat transfer coefficient for SiC-water nanofluid in comparison to the base fluid was 37.66%.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8180
Author(s):  
Kunhong Lv ◽  
Hao Huang ◽  
Xingqiang Zhong ◽  
Yian Tong ◽  
Xingjie Ling ◽  
...  

The exploitations of deep-water wells often use directional well drilling to reach the target layer. Affected by special environments in deep water, the prediction of pressure loss of cement slurry is particularly important. This paper presents a prediction model of pressure loss suitable for deep-water directional wells. This model takes the complex interaction between the temperature, pressure and hydration kinetics of cement slurry into account. Based on the initial and boundary conditions, the finite difference method is used to discretize and calculate the model to ensure the stability and convergence of the result calculated by this model. Finally, the calculation equation of the model is used to predict the transient temperature and pressure loss of Wells X1 and X2, and a comparison is made between the predicted value and the monitoring data. The comparison results show that the maximum error between the temperature and pressure predicted by the model and the field measured value is within 6%. Thus, this model is of high accuracy and can meet the needs of site construction. It is concluded that this result can provide reliable theoretical guidance for temperature and pressure prediction, as well as the anti-channeling design of HTHP directional wells.


2021 ◽  
pp. 1-49
Author(s):  
Xin Yan

Abstract To improve the resolution accuracy and get deep insight into the flow structures in squealer tip gap, the Very Large Eddy Simulation (VLES) method was implemented into the commercial CFD (Computational Fluid Dynamics) solver with the User Defined Function (UDF). Based on the published experimental data, the numerical accuracy of VLES method was validated. With VLES method, the unsteady heat transfer coefficient distributions on the squealer tip and total pressure loss in the blade passage were computed. The influences of coherent vortex structures on aero-thermal performance in the squealer tip gap were analyzed. The results show that the Brown-Roshko vortices are the main driver for the formation of cavity vortex system. The direct impingement of pass-over leakage into the cavity is the main cause of high heat transfer area on the cavity floor near leading edge. The unsteady fluctuations of leakage rate through the tip gap reach about ±8% of the time-averaged value. The development of leakage vortex accounts for the major contribution of total pressure loss in the squealer tipped blade. Due to flow unsteadiness, the fluctuation of pitch-averaged total pressure loss coefficient induced by leakage vortex system reaches about ±30% of the time-averaged value. The unsteady fluctuation of pitch-averaged heat transfer coefficient on the cavity floor reaches about ±35% of the time-averaged value, while on the shroud surface it is only fluctuated by about ±10%.


Sign in / Sign up

Export Citation Format

Share Document