High resolution local heat transfer and pressure drop infrared measurements of two-phase flow of R245fa within a compact plate heat exchanger

Author(s):  
Raffaele L. Amalfi ◽  
John R. Thome ◽  
Valentin Solotych ◽  
Jungho Kim
Author(s):  
Ru Wang ◽  
Tingyan Sun ◽  
Anja-Elsa Polzin ◽  
Stephan Kabelac

AbstractPlate heat exchangers are widely used for two-phase heat transfer in the industrial applications, and recently more attention has been paid to the plate heat exchangers with enhanced surface due to their better heat transfer performance. In this paper, the local condensation heat transfer coefficients are studied using R134a in a micro-structured plate heat exchanger. In order to obtain a more accurate prediction model, a series of measurements are conducted under various operating conditions. The mass flux of R134a varied from 47 kg/m2s to 77 kg/m2s, the saturation pressure in the condenser ranged from 6.32 bar to 8.95 bar, and the value of the heat flux was between 13 kW/m2 and 22 kW/m2. The local two-phase Nusselt number increases with the increase of the mass flux. As the saturation pressure increases, the local two-phase Nusselt number increase at the beginning of the condensation and decrease at the end of the condensation. However, the effect of heat flux on local heat transfer is irregular, due to the interaction of these parameters in the experiment. Comparing with the unstructured plate heat exchanger, R134a condenses faster at the beginning of the process in the micro-sturctured plate heat exchanger, and the local heat transfer performs better when the vapor quality is lower. Combing with the phenomenon that the overall heat flux in micro-structured plate is larger under the same working conditions, it shows that the overall heat transfer of the micro-structured plate is improved, but the local heat transfer uprades only at lower vapor qualities. A new correlation is developed, it predicts all the experimental data within the root mean square error 10%, and a new correlation for the waterside is suggested as well.


Author(s):  
Iulian Gherasim ◽  
Nicolas Galanis ◽  
Cong Tam Nguyen

The problem of turbulent flow and heat transfer in a two-channel plate heat exchanger was numerically investigated, considering its complex geometry as well as inlet and outlet ports effects. Results obtained for the flow and thermal field have clearly shown their asymmetrical behavior, which has important influence on the local heat transfer. Friction factor are found to be in good agreement with theoretical correlation.


Sign in / Sign up

Export Citation Format

Share Document