Natural convection of viscoplastic fluids in an enclosure with partially heated bottom wall

2020 ◽  
Vol 158 ◽  
pp. 106527
Author(s):  
M.A. Hassan ◽  
Manabendra Pathak ◽  
Mohd. Kaleem Khan ◽  
N.H. Khan
Author(s):  
Mohd. Ashique Hassan ◽  
Manabendra Pathak ◽  
Mohd. Kaleem Khan

In this study a computational investigation of two-dimensional, steady-state, natural convection of viscoplastic fluid in a square enclosure has been presented. The enclosure has been locally heated from the bottom wall using a constant heat flux source and symmetrically cooled from both the side walls. The other walls are maintained as insulated surfaces. Finite volume based code has been used in the simulation and Bingham model has been used to model the rheology of the enclosed viscoplastic fluids. Simulations have been made for three different heating lengths of the bottom wall. The flow phenomenon and heat transfer inside the enclosure have been investigated for different properties of viscoplastic fluid, heating conditions and heated length. It has been observed that for a particular thermal condition the heat transfer coefficient or the Nusselt number decrease with the increase in yield stress value of the fluid due to weakening of convective circulation.


2009 ◽  
Vol 131 (7) ◽  
Author(s):  
Ashok Kumar ◽  
P. Bera

A comprehensive numerical investigation on the natural convection in a hydrodynamically anisotropic porous enclosure is presented. The flow is due to nonuniformly heated bottom wall and maintenance of constant temperature at cold vertical walls along with adiabatic top wall. Brinkman-extended non-Darcy model, including material derivative, is considered. The principal direction of the permeability tensor has been taken oblique to the gravity vector. The spectral element method has been adopted to solve numerically the governing conservative equations of mass, momentum, and energy by using a stream-function vorticity formulation. Special attention is given to understand the effect of anisotropic parameters on the heat transfer rate as well as flow configurations. The numerical experiments show that in the case of isotropic porous enclosure, the maximum rates of bottom as well as side heat transfers (Nub and Nus) take place at the aspect ratio, A, of the enclosure equal to 1, which is, in general, not true in the case of anisotropic porous enclosures. The flow in the enclosure is governed by two different types of convective cells: rotating (i) clockwise and (ii) anticlockwise. Based on the value of media permeability as well as orientation angle, in the anisotropic case, one of the cells will dominate the other. In contrast to isotropic porous media, enhancement of flow convection in the anisotropic porous enclosure does not mean increasing the side heat transfer rate always. Furthermore, the results show that anisotropy causes significant changes in the bottom as well as side average Nusselt numbers. In particular, the present analysis shows that permeability orientation angle has a significant effect on the flow dynamics and temperature profile and consequently on the heat transfer rates.


Author(s):  
Ram Satish Kaluri ◽  
Tanmay Basak ◽  
A. R. Balakrishnan

Natural convection is a widely occurring phenomena which has important applications in material processing, energy storage devices, electronic cooling, building ventilation etc. The concept of ‘entropy generation minimization’, which is a thermodynamic approach for optimization, may be very useful in designing efficient thermal systems. In the current study, entropy generation in steady laminar natural convection flow in a square cavity is studied with following isothermal boundary conditions: (1) Bottom wall is uniformly heated (2) Bottom wall is sinusoidally heated. The side walls are maintained cold and the top wall is maintained adiabatic. The thermal boundary condition in non-uniform heating case (case 2) is such that the dimensionless average temperature of the bottom wall is equal to that of uniform heating case (case 1). The prime objective of this work is to investigate the influence of uniform and non-uniform heating on entropy generation. The governing mass, momentum and energy equations are solved using Galerkin finite element method. Streamlines, isotherms, contour maps of entropy generation due to heat transfer and fluid friction are studied for Pr = 0.01 (molten metals) and 7 (water) in range of Ra = 103–105. Detailed analysis on the effect of uniform and non-uniform thermal boundary conditions on entropy generation due to heat transfer and fluid friction has been presented. Also, the average Bejan’s number which indicates the relative dominance of entropy generation due to heat transfer or fluid friction and the total entropy generation are studied for each case.


2019 ◽  
Vol 29 (12) ◽  
pp. 4826-4849 ◽  
Author(s):  
Shantanu Dutta ◽  
Arup Kumar Biswas ◽  
Sukumar Pati

Purpose The purpose of this paper is to analyze the natural convection heat transfer and irreversibility characteristics in a quadrantal porous cavity subjected to uniform temperature heating from the bottom wall. Design/methodology/approach Brinkmann-extended Darcy model is used to simulate the momentum transfer in the porous medium. The Boussinesq approximation is invoked to account for the variation in density arising out of the temperature differential for the porous quadrantal enclosure subjected to uniform heating on the bottom wall. The governing transport equations are solved using the finite element method. A parametric study is carried out for the Rayleigh number (Ra) in the range of 103 to 106 and Darcy number (Da) in the range of 10−5-10−2. Findings A complex interaction between the buoyant and viscous forces that govern the transport of heat and entropy generation and the permeability of the porous medium plays a significant role on the same. The effect of Da is almost insignificant in dictating the heat transfer for low values of Ra (103, 104), while there is a significant alteration in Nusselt number for Ra ≥105 and moreover, the change is more intense for larger values of Da. For lower values of Ra (≤104), the main contributor of irreversibility is the thermal irreversibility irrespective of all values of Da. However, the fluid friction irreversibility is the dominant player at higher values of Ra (=106) and Da (=10−2). Practical implications From an industrial point of view, the present study will have applications in micro-electronic devices, building systems with complex geometries, solar collectors, electric machinery and lubrication systems. Originality/value This research examines numerically the buoyancy driven heat transfer irreversibility in a quadrantal porous enclosure that is subjected to uniform temperature heating from the bottom wall, that was not investigated in the literature before.


Sign in / Sign up

Export Citation Format

Share Document