convection heat transfer
Recently Published Documents


TOTAL DOCUMENTS

4375
(FIVE YEARS 747)

H-INDEX

91
(FIVE YEARS 18)

2022 ◽  
Author(s):  
Vikrant Chandrakar ◽  
Arnab Mukherjee ◽  
Jnana Ranjan Senapati ◽  
Ashok Kumar Barik

Abstract A convection system can be designed as an energy-efficient one by making a considerable reduction in exergy losses. In this context, entropy generation analysis is performed on the infrared suppression system numerically. In addition, results due to heat transfer are also shown. The numerical solution of the Navier-stokes equation, energy equation, and turbulence equation is executed using ANSYS Fluent 15.0. To perform the numerical analysis, different parameters such as the number of funnels, Rayleigh number (Ra), inner surface temperature, and geometric ratio are varied in the practical range. Results are shown in terms of heat transfer, entropy generation, irreversibility (due to heat transfer and fluid friction), and Bejan number with some relevant parameters. Streamlines and temperature contours are also provided for better visualization of temperature and flow field around the device. Results show that heat transfer and mass flow rate increase with the increase in Ra. Entropy generation and the irreversibility rise with an increase in the number of funnels and geometric ratio. Also, the Bejan number decreases with an increase in Ra and the number of funnels. A cooling time is also obtained using the lumped capacitance method.


2022 ◽  
Author(s):  
Babar Iftikhar ◽  
Muhammad Arshad Siddiqui ◽  
Tariq Javed

Abstract In the present analysis, natural convection heat transfer coupled with thermal radiation of bi-viscosity fluid contained inside the cavity has been studied through heatlines and entropy generation. Heat is provided to the cavity through heated source with length L/2, which is placed at the middle of bottom wall. Side walls of the enclosure at low temperature i.e. T_c ad rest of the walls are kept an adiabatic. The idea of Bejan heatlines and average Bejan number have been used to visualized the convective heat folw and dominant irreversibility due to fluid flow or heat transfer, respectively. Finite element method with penalty technique has been applied to obtain the solution of governing equations. Results are obtained through numerically and displayed in terms of streamlines, heat flux lines , isotherms, velocity, temperature, entropy, Nusselt number and average Bejan number against the extensive range of bi-viscosity β=0.002-1 and thermal radiation N_R=0-5, at fixed Rayleigh Ra=〖10〗^5 and Prandtl number Pr=10. It is observed that there exist a direct relation between bi-viscosity parameter and convection heat transfer due to buoyancy-driven flow. Moreover, the dominant entropy generation has been reported through heat transfer in the lower region of the cavity with and without thermal radiation.


Author(s):  
Ali Mokhtari Nahal ◽  
Mohammad Hassan Nobakhti ◽  
Cyrus Aghanajafi ◽  
Morteza Khayat

In this study, a numerical study is performed on the cooling phenomenon of three heat source electronic devices. The electronic devices are cooled in the form of natural heat transfer by the airflow in a porous medium. Electronic devices are installed on the boundary walls of a square environment. Cooling simulations are performed by drawing flow lines and constant temperature lines. Our main goal is to find the highest cooling rate in different Darcy numbers and different Rayleigh numbers in our investigation. The range of Darcy numbers and Rayleigh numbers is between 0.0001 to 0.01 and 1000 to 100,000, respectively. Our investigation showed the maximum cooling is obtained at the Darcy number of about 0.01. And also, by decreasing the value of Darcy number, a higher cooling rate for the hot boundary walls is achieved.


Sign in / Sign up

Export Citation Format

Share Document