Hierarchical Identity-based Inner Product Functional Encryption

Author(s):  
Ge Song ◽  
Yuqiao Deng ◽  
Qiong Huang ◽  
Changgen Peng ◽  
Chunming Tang ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Qingsong Zhao ◽  
Qingkai Zeng ◽  
Ximeng Liu

Functional encryption (FE) is a vast new paradigm for encryption scheme which allows tremendous flexibility in accessing encrypted data. In a FE scheme, a user can learn specific function of encrypted messages by restricted functional key and reveals nothing else about the messages. Besides the standard notion of data privacy in FE, it should protect the privacy of the function itself which is also crucial for practical applications. In this paper, we construct a secret key FE scheme for the inner product functionality using asymmetric bilinear pairing groups of prime order. Compared with the existing similar schemes, our construction reduces both necessary storage and computational complexity by a factor of 2 or more. It achieves simulation-based security, security strength which is higher than that of indistinguishability-based security, against adversaries who get hold of an unbounded number of ciphertext queries and adaptive secret key queries under the External Decisional Linear (XDLIN) assumption in the standard model. In addition, we implement the secret key inner product scheme and compare the performance with the similar schemes.


Sign in / Sign up

Export Citation Format

Share Document