Leakage-resilient CCA2-secure certificateless public-key encryption scheme without bilinear pairing

2018 ◽  
Vol 130 ◽  
pp. 16-24 ◽  
Author(s):  
Yanwei Zhou ◽  
Bo Yang
2020 ◽  
Vol 63 (12) ◽  
pp. 1904-1914
Author(s):  
Janaka Alawatugoda

Abstract Over the years, security against adaptively chosen-ciphertext attacks (CCA2) is considered as the strongest security definition for public-key encryption schemes. With the uprise of side-channel attacks, new security definitions are proposed, addressing leakage of secret keys together with the standard CCA2 definition. Among the new security definitions, security against continuous and after-the-fact leakage-resilient CCA2 can be considered as the strongest security definition, which is called as security against (continuous) adaptively chosen-ciphertext leakage attacks (continuous CCLA2). In this paper, we present a construction of a public-key encryption scheme, namely LR-PKE, which satisfies the aforementioned security definition. The security of our public-key encryption scheme is proven in the standard model, under decision BDH assumption. Thus, we emphasize that our public-key encryption scheme LR-PKE is (continuous) CCLA2-secure in the standard model. For our construction of LR-PKE, we have used a strong one-time signature scheme and a leakage-resilient refreshing protocol as underlying building blocks. The leakage bound is $0.15n\log p -1$ bits per leakage query, for a security parameter $k$ and a statistical security parameter $n$, such that $\log p \geq k$ and $n$ is a function of $k$. It is possible to see that LR-PKE is efficient enough to be used for real-world usage.


2019 ◽  
Vol 30 (02) ◽  
pp. 255-273 ◽  
Author(s):  
Min-Shiang Hwang ◽  
Cheng-Chi Lee ◽  
Shih-Ting Hsu

The idea of public key encryption with keyword search (PEKS), proposed by Boneh et al., enables one to send a trapdoor containing a encrypted keyword to query data without revealing the keyword. In Boneh et al.’s design, the trapdoor has to be transferred through a secure channel, which is both costly and inefficient. Baek et al. then proposed an efficient secure channel free public key encryption scheme with keyword search (SCF-PEKS). After that, vast amounts of research have focused on the protection against the off-line keyword guessing attack (OKGA) by enhancing the model. However, most of the PEKS/SCF-PEKS schemes developed so far are constructed by applying bilinear pairing and are susceptible to off-line keyword guessing attacks. In this paper, we propose a new SCF-PEKS scheme based on the ElGamal cryptosystem. The proposed scheme is not only secure against off-line keyword guessing attacks but also improves the efficiency.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Rui Guo ◽  
Qiaoyan Wen ◽  
Huixian Shi ◽  
Zhengping Jin ◽  
Hua Zhang

Certificateless cryptography aims at combining the advantages of public key cryptography and identity based cryptography to avoid the certificate management and the key escrow problem. In this paper, we present a novel certificateless public key encryption scheme on the elliptic curve over the ring, whose security is based on the hardness assumption of Bilinear Diffie-Hellman problem and factoring the large number as in an RSA protocol. Moreover, since our scheme requires only one pairing operation in decryption, it is significantly more efficient than other related schemes. In addition, based on our encryption system, we also propose a protocol to protect the confidentiality and integrity of information in the scenario of Internet of Things with constrained resource nodes.


Sign in / Sign up

Export Citation Format

Share Document