key agreement
Recently Published Documents


TOTAL DOCUMENTS

2743
(FIVE YEARS 580)

H-INDEX

68
(FIVE YEARS 13)

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sandeep Kumar Reddy Thota ◽  
C. Mala ◽  
Geetha Krishnan

Purpose A wireless body area network (WBAN) is a collection of sensing devices attached to a person’s body that is typically used during health care to track their physical state. This paper aims to study the security challenges and various attacks that occurred while transferring a person’s sensitive medical diagnosis information in WBAN. Design/methodology/approach This technology has significantly gained prominence in the medical field. These wearable sensors are transferring information to doctors, and there are numerous possibilities for an intruder to pose as a doctor and obtain information about the patient’s vital information. As a result, mutual authentication and session key negotiations are critical security challenges for wearable sensing devices in WBAN. This work proposes an improved mutual authentication and key agreement protocol for wearable sensing devices in WBAN. The existing related schemes require more computational and storage requirements, but the proposed method provides a flexible solution with less complexity. Findings As sensor devices are resource-constrained, proposed approach only makes use of cryptographic hash-functions and bit-wise XOR operations, hence it is lightweight and flexible. The protocol’s security is validated using the AVISPA tool, and it will withstand various security attacks. The proposed protocol’s simulation and performance analysis are compared to current relevant schemes and show that it produces efficient outcomes. Originality/value This technology has significantly gained prominence in the medical sector. These sensing devises transmit information to doctors, and there are possibilities for an intruder to pose as a doctor and obtain information about the patient’s vital information. Hence, this paper proposes a lightweight and flexible protocol for mutual authentication and key agreement for wearable sensing devices in WBAN only makes use of cryptographic hash-functions and bit-wise XOR operations. The proposed protocol is simulated using AVISPA tool and its performance is better compared to the existing methods. This paper proposes a novel improved mutual authentication and key-agreement protocol for wearable sensing devices in WBAN.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 188
Author(s):  
Shadi Nashwan

Smart irrigation is considered one of the most significant agriculture management systems worldwide, considering the current context of water scarcity. There is a clear consensus that such smart systems will play an essential role in achieving the economic growth of other vital sectors. In general, the consequences of global warming and the unavailability of clean water sources for the agricultural sector are clear indications that the demand for these systems will increase in the near future, especially considering the recent expansions in the use of the Internet of Things (IoT) and Wireless Sensor Network (WSN) technologies, which have been employed in the development of such systems. An obvious result is that security challenges will be one of the main obstacles to attaining the widespread adoption of such systems. Therefore, this paper proposes a secure authentication scheme using Diffie–Hellman key agreement for smart IoT irrigation systems using WSNs. This scheme is based on Diffie–Hellman and one-way hash cryptographic functions in order to support the basic security services with a high data rate and ability to resist well-known attacks. The Burrows–Abadi–Needham (BAN) logic model is used to verify the proposed scheme formally. Based on various possible attack scenarios, a resistance analysis of the proposed scheme is discussed. Further analyses are performed in terms of the storage size, intercommunication, and running time costs. Therefore, the proposed scheme not only can be considered a secure authentication scheme but is also practical for smart IoT irrigation systems due to its reasonable efficiency factors.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Hongyuan Wang ◽  
Jin Meng ◽  
Xilong Du ◽  
Tengfei Cao ◽  
Yong Xie

Internet of Things (IoT) has been widely used in many fields, bringing great convenience to people’s traditional work and life. IoT generates tremendous amounts of data at the edge of network. However, the security of data transmission is facing severe challenges. In particular, edge IoT nodes cannot run complex encryption operations due to their limited computing and storage resources. Therefore, edge IoT nodes are more susceptible to various security attacks. To this end, a lightweight mutual authentication and key agreement protocol is proposed to achieve the security of IoT nodes’ communication. The protocol uses the reverse fuzzy extractor to acclimatize to the noisy environment and introduces the supplementary subprotocol to enhance resistance to the desynchronization attack. It uses only lightweight cryptographic operations, such as hash function, XORs, and PUF. It only stores one pseudo-identity. The protocol is proven to be secure by rigid security analysis based on improved BAN logic. Performance analysis shows the proposed protocol has more comprehensive functions and incurs lower computation and communication cost when compared with similar protocols.


2022 ◽  
Vol 42 (2) ◽  
pp. 577-587
Author(s):  
P. Thirumoorthy ◽  
K. S. Bhuvaneshwari ◽  
C. Kamalanathan ◽  
P. Sunita ◽  
E. Prabhu ◽  
...  

2022 ◽  
Vol 70 (3) ◽  
pp. 6141-6158
Author(s):  
Bander Alzahrani ◽  
Ahmed Barnawi ◽  
Azeem Irshad ◽  
Areej Alhothali ◽  
Reem Alotaibi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document