Robust absolute stability criteria for uncertain Lurie interval time-varying delay systems of neutral type

2016 ◽  
Vol 60 ◽  
pp. 2-11 ◽  
Author(s):  
Pin- Lin Liu
2017 ◽  
Vol 28 (2) ◽  
pp. 661-677 ◽  
Author(s):  
Reza Mohajerpoor ◽  
Lakshmanan Shanmugam ◽  
Hamid Abdi ◽  
Rajan Rakkiyappan ◽  
Saeid Nahavandi ◽  
...  

2014 ◽  
Vol 24 (5) ◽  
Author(s):  
GUOQUAN LIU ◽  
SIMON X. YANG ◽  
YI CHAI ◽  
WEI FU

In this paper, we investigate the problem of robust stability for a class of delayed neural networks of neutral-type with linear fractional uncertainties. The activation functions are assumed to be unbounded, non-monotonic and non-differentiable, and the delay is assumed to be time-varying and belonging to a given interval, which means that the lower and upper bounds of the interval time-varying delay are available. By constructing a general form of the Lyapunov–Krasovskii functional, and using the linear matrix inequality (LMI) approach, we derive several delay-dependent stability criteria in terms of LMI. Finally, we give a number of examples to illustrate the effectiveness of the proposed method.


2012 ◽  
Vol 2012 ◽  
pp. 1-18
Author(s):  
W. Weera ◽  
P. Niamsup

This paper deals with the problem of stability for a class of Lur’e systems with interval time-varying delay and sector-bounded nonlinearity. The interval time-varying delay function is not assumed to be differentiable. We analyze the global exponential stability for uncertain neutral and Lur’e dynamical systems with some sector conditions. By constructing a set of improved Lyapunov-Krasovskii functional combined with Leibniz-Newton’s formula, we establish some stability criteria in terms of linear matrix inequalities. Numerical examples are given to illustrate the effectiveness of the results.


Sign in / Sign up

Export Citation Format

Share Document