scholarly journals Counting the number of distinct distances of elements in valued field extensions

2018 ◽  
Vol 509 ◽  
pp. 192-211 ◽  
Author(s):  
Anna Blaszczok ◽  
Franz-Viktor Kuhlmann
1971 ◽  
Vol 23 (2) ◽  
pp. 271-281 ◽  
Author(s):  
Murray A. Marshall

Let k be a local field; that is, a complete discrete-valued field having a perfect residue class field. If L is a finite Galois extension of k then L is also a local field. Let G denote the Galois group GL|k. Then the nth ramification group Gn is defined bywhere OL, denotes the ring of integers of L, and PL is the prime ideal of OL. The ramification groups form a descending chain of invariant subgroups of G:1In this paper, an attempt is made to characterize (in terms of the arithmetic of k) the ramification filters (1) obtained from abelian extensions L\k.


2018 ◽  
Vol 159 (3-4) ◽  
pp. 397-429
Author(s):  
Anna Blaszczok

2021 ◽  
Author(s):  
Lhoussain El Fadil ◽  
Mohamed Faris

Polynomial factorization over a field is very useful in algebraic number theory, in extensions of valuations, etc. For valued field extensions, the determination of irreducible polynomials was the focus of interest of many authors. In 1850, Eisenstein gave one of the most popular criterion to decide on irreducibility of a polynomial over Q. A criterion which was generalized in 1906 by Dumas. In 2008, R. Brown gave what is known to be the most general version of Eisenstein-Schönemann irreducibility criterion. Thanks to MacLane theory, key polynomials play a key role to extend absolute values. In this chapter, we give a sufficient condition on any monic plynomial to be a key polynomial of an absolute value, an irreducibly criterion will be given, and for any simple algebraic extension L=Kα, we give a method to describe all absolute values of L extending ∣∣, where K is a discrete rank one valued field.


2003 ◽  
Vol 2003 (70) ◽  
pp. 4435-4446
Author(s):  
M. Boulagouaz

We study transcendency properties for graded field extension and give an application to valued field extensions.


Author(s):  
Julio R. Bastida ◽  
Roger Lyndon

Author(s):  
Ehud Hrushovski ◽  
François Loeser

This chapter provides some background material on definable sets, definable types, orthogonality to a definable set, and stable domination, especially in the valued field context. It considers more specifically these concepts in the framework of the theory ACVF of algebraically closed valued fields and describes the definable types concentrating on a stable definable V as an ind-definable set. It also proves a key result that demonstrates definable types as integrals of stably dominated types along some definable type on the value group sort. Finally, it discusses the notion of pseudo-Galois coverings. Every nonempty definable set over an algebraically closed substructure of a model of ACVF extends to a definable type.


Author(s):  
G. Suresh Singh ◽  
P. K. Prasobha

Let $K$ be any finite field. For any prime $p$, the $p$-adic valuation map is given by $\psi_{p}:K/\{0\} \to \R^+\bigcup\{0\}$ is given by $\psi_{p}(r) = n$ where $r = p^n \frac{a}{b}$, where $p,a,b$ are relatively prime. The field $K$ together with a valuation is called valued field. Also, any field $K$ has the trivial valuation determined by $\psi{(K)} = \{0,1\}$. Through out the paper K represents $\Z_q$. In this paper, we construct the graph corresponding to the valuation map called the valued field graph, denoted by $VFG_{p}(\Z_{q})$ whose vertex set is $\{v_0,v_1,v_2,\ldots, v_{q-1}\}$ where two vertices $v_i$ and $v_j$ are adjacent if $\psi_{p}(i) = j$ or $\psi_{p}(j) = i$. Here, we tried to characterize the valued field graph in $\Z_q$. Also we analyse various graph theoretical parameters such as diameter, independence number etc.


Sign in / Sign up

Export Citation Format

Share Document