residue class
Recently Published Documents


TOTAL DOCUMENTS

205
(FIVE YEARS 49)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Ramazan Duran ◽  
Murat Güzeltepe

Abstract The residue class set of a Hurwitz integer is constructed by modulo function with primitive Hurwitz integer whose norm is a prime integer, i.e. prime Hurwitz integer. In this study, we consider primitive Hurwitz integer whose norm is both a prime integer and not a prime integer. If the norm of each element of the residue class set of a Hurwitz integer is less than the norm of the primitive Hurwitz integer used to construct the residue class set of the Hurwitz integer, then, the Euclid division algorithm works for this primitive Hurwitz integer. The Euclid division algorithm always works for prime Hurwitz integers. In other words, the prime Hurwitz integers and halves-integer primitive Hurwitz integers have the ”division with small remainder” property. However, this property is ignored in some studies that have a constructed Hurwitz residue class set that lies on primitive Hurwitz integers that their norms are not a prime integer and their components are in integers set. In this study, we solve this problem by defining Hurwitz integers that have the ”division with small remainder” property, namely, encoder Hurwitz integers set. Therefore, we can define appropriate metrics for codes over Lipschitz integers. Especially, Euclidean metric. Also, we investigate the performances of Hurwitz signal constellations (the left residue class set) obtained by modulo function with Hurwitz integers, which have the ”division with small remainder” property, over the additive white Gaussian noise (AWGN) channel by means of the constellation figure of merit (CFM), average energy, and signal-to-noise ratio (SNR).


2021 ◽  
Author(s):  
Ramazan Duran ◽  
Murat Güzeltepe

Abstract The residue class set of a Lipschitz integer is constructed by modulo function with primitive Lipschitz integer whose norm is a prime integer, i.e. prime Lipschitz integer. In this study, we consider primitive Lipschitz integer whose norm is both a prime integer and not a prime integer. If the norm of each element of the residue class set of a Lipschitz integer is less than the norm of the primitive Lipschitz integer used to construct the residue class set of the Lipschitz integer, then, the Euclid division algorithm works for this primitive Lipschitz integer. The Euclid division algorithm always works for prime Lipschitz integers. In other words, the prime Lipschitz integers have the ”division with small remainder” property. However, this property is ignored in some studies that have a constructed Lipschitz residue class set that lies on primitive Lipschitz integers whose norm is not a prime integer. In this study, we solve this problem by defining Lipschitz integers that have the ”division with small remainder” property, namely, encoder Lipschitz integers set. Therefore, we can define appropriate metrics for codes over Lipschitz integers. Also, we investigate the performances of Lipschitz signal constellations (the left residue class set) obtained by modulo function with Lipschitz integers, which have the ”division with small remainder” property, over the additive white Gaussian noise (AWGN) channel by agency of the constellation figure of merit (CFM), average energy, and signal-to-noise ratio (SNR).


2021 ◽  
Author(s):  
Ramazan Duram ◽  
Murat Güzeltepe

Abstract The residue class set of a Lipschitz integer is constructed by modulo function with primitive Lipschitz integer whose norm is a prime integer, i.e. prime Lipschitz integer. In this study, we consider primitive Lipschitz integer whose norm is both a prime integer and not a prime integer. If the norm of each element of the residue class set of a Lipschitz integer is less than the norm of the primitive Lipschitz integer used to construct the residue class set of the Lipschitz integer, then, the Euclid division algorithm works for this primitive Lipschitz integer. The Euclid division algorithm always works for prime Lipschitz integers. In other words, the prime Lipschitz integers have the ”division with small remainder” property. However, this property is ignored in some studies that have a constructed Lipschitz residue class set that lies on primitive Lipschitz integers whose norm is not a prime integer. In this study, we solve this problem by defining Lipschitz integers that have the ”division with small remainder” property, namely, encoder Lipschitz integers set. Therefore, we can define appropriate metrics for codes over Lipschitz integers. Also, we investigate the performances of Lipschitz signal constellations (the left residue class set) obtained by modulo function with Lipschitz integers, which have the ”division with small remainder” property, over the additive white Gaussian noise (AWGN) channel by agency of the constellation figure of merit (CFM), average energy, and signal-to-noise ratio (SNR).


2021 ◽  
Author(s):  
Ramazan Duram ◽  
Murat Güzeltepe

Abstract The residue class set of a Hurwitz integer is constructed by modulo function with primitive Hurwitz integer whose norm is a prime integer, i.e. prime Hurwitz integer. In this study, we consider primitive Hurwitz integer whose norm is both a prime integer and not a prime integer. If the norm of each element of the residue class set of a Hurwitz integer is less than the norm of the primitive Hurwitz integer used to construct the residue class set of the Hurwitz integer, then, the Euclid division algorithm works for this primitive Hurwitz integer. The Euclid division algorithm always works for prime Hurwitz integers. In other words, the prime Hurwitz integers and halves-integer primitive Hurwitz integers have the ”division with small remainder” property. However, this property is ignored in some studies that have a constructed Hurwitz residue class set that lies on primitive Hurwitz integers that their norms are not a prime integer and their components are in integers set. In this study, we solve this problem by defining Hurwitz integers that have the ”division with small remainder” property, namely, encoder Hurwitz integers set. Therefore, we can define appropriate metrics for codes over Lipschitz integers. Especially, Euclidean metric. Also, we investigate the performances of Hurwitz signal constellations (the left residue class set) obtained by modulo function with Hurwitz integers, which have the ”division with small remainder” property, over the additive white Gaussian noise (AWGN) channel by means of the constellation figure of merit (CFM), average energy, and signal-to-noise ratio (SNR).


2021 ◽  
Author(s):  
Ramazan Duram ◽  
Murat Güzeltepe

Abstract The residue class set of a Hurwitz integer is constructed by modulo function with primitive Hurwitz integer whose norm is a prime integer, i.e. prime Hurwitz integer. In this study, we consider primitive Hurwitz integer whose norm is both a prime integer and not a prime integer. If the norm of each element of the residue class set of a Hurwitz integer is less than the norm of the primitive Hurwitz integer used to construct the residue class set of the Hurwitz integer, then, the Euclid division algorithm works for this primitive Hurwitz integer. The Euclid division algorithm always works for prime Hurwitz integers. In other words, the prime Hurwitz integers and halves-integer primitive Hurwitz integers have the ”division with small remainder” property. However, this property is ignored in some studies that have a constructed Hurwitz residue class set that lies on primitive Hurwitz integers that their norms are not a prime integer and their components are in integers set. In this study, we solve this problem by defining Hurwitz integers that have the ”division with small remainder” property, namely, encoder Hurwitz integers set. Therefore, we can define appropriate metrics for codes over Lipschitz integers. Especially, Euclidean metric. Also, we investigate the performances of Hurwitz signal constellations (the left residue class set) obtained by modulo function with Hurwitz integers, which have the ”division with small remainder” property, over the additive white Gaussian noise (AWGN) channel by means of the constellation figure of merit (CFM), average energy, and signal-to-noise ratio (SNR).


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Bernhard Heim ◽  
Markus Neuhauser

AbstractIn 2016 Bessenrodt–Ono discovered an inequality addressing additive and multiplicative properties of the partition function. Generalizations by several authors have been given; on partitions with rank in a given residue class by Hou–Jagadeesan and Males, on k-regular partitions by Beckwith–Bessenrodt, on k-colored partitions by Chern–Fu–Tang, and Heim–Neuhauser on their polynomization, and Dawsey–Masri on the Andrews spt-function. The proofs depend on non-trivial asymptotic formulas related to the circle method on one side, or a sophisticated combinatorial proof invented by Alanazi–Gagola–Munagi. We offer in this paper a new proof of the Bessenrodt–Ono inequality, which is built on a well-known recursion formula for partition numbers. We extend the proof to the result by Chern–Fu–Tang and its polynomization. Finally, we also obtain a new result.


2021 ◽  
Author(s):  
Ramazan Duram ◽  
Murat Güzeltepe

Abstract The residue class set of a Hurwitz integer is constructed by modulo function with primitive Hurwitz integer whose norm is a prime integer, i.e. prime Hurwitz integer. In this study, we consider primitive Hurwitz integer whose norm is both a prime integer and not a prime integer. If the norm of each element of the residue class set of a Hurwitz integer is less than the norm of the primitive Hurwitz integer used to construct the residue class set of the Hurwitz integer, then, the Euclid division algorithm works for this primitive Hurwitz integer. The Euclid division algorithm always works for prime Hurwitz integers. In other words, the prime Hurwitz integers and halves-integer primitive Hurwitz integers have the ”division with small remainder” property. However, this property is ignored in some studies that have a constructed Hurwitz residue class set that lies on primitive Hurwitz integers that their norms are not a prime integer and their components are in integers set. In this study, we solve this problem by defining Hurwitz integers that have the ”division with small remainder” property, namely, encoder Hurwitz integers set. Therefore, we can define appropriate metrics for codes over Lipschitz integers. Especially, Euclidean metric. Also, we investigate the performances of Hurwitz signal constellations (the left residue class set) obtained by modulo function with Hurwitz integers, which have the ”division with small remainder” property, over the additive white Gaussian noise (AWGN) channel by means of the constellation figure of merit (CFM), average energy, and signal-to-noise ratio (SNR).


2021 ◽  
Author(s):  
Ramazan Duram ◽  
Murat Güzeltepe

Abstract The residue class set of a Lipschitz integer is constructed by modulo function with primitive Lipschitz integer whose norm is a prime integer, i.e. prime Lipschitz integer. In this study, we consider primitive Lipschitz integer whose norm is both a prime integer and not a prime integer. If the norm of each element of the residue class set of a Lipschitz integer is less than the norm of the primitive Lipschitz integer used to construct the residue class set of the Lipschitz integer, then, the Euclid division algorithm works for this primitive Lipschitz integer. The Euclid division algorithm always works for prime Lipschitz integers. In other words, the prime Lipschitz integers have the ”division with small remainder” property. However, this property is ignored in some studies that have a constructed Lipschitz residue class set that lies on primitive Lipschitz integers whose norm is not a prime integer. In this study, we solve this problem by defining Lipschitz integers that have the ”division with small remainder” property, namely, encoder Lipschitz integers set. Therefore, we can define appropriate metrics for codes over Lipschitz integers. Also, we investigate the performances of Lipschitz signal constellations (the left residue class set) obtained by modulo function with Lipschitz integers, which have the ”division with small remainder” property, over the additive white Gaussian noise (AWGN) channel by agency of the constellation figure of merit (CFM), average energy, and signal-to-noise ratio (SNR).


Author(s):  
A. Haddley ◽  
R. Nair

AbstractLet $${\mathcal {M}}$$ M denote the maximal ideal of the ring of integers of a non-Archimedean field K with residue class field k whose invertible elements, we denote $$k^{\times }$$ k × , and a uniformizer we denote $$\pi $$ π . In this paper, we consider the map $$T_{v}: {\mathcal {M}} \rightarrow {\mathcal {M}}$$ T v : M → M defined by $$\begin{aligned} T_v(x) = \frac{\pi ^{v(x)}}{x} - b(x), \end{aligned}$$ T v ( x ) = π v ( x ) x - b ( x ) , where b(x) denotes the equivalence class to which $$\frac{\pi ^{v(x)}}{x}$$ π v ( x ) x belongs in $$k^{\times }$$ k × . We show that $$T_v$$ T v preserves Haar measure $$\mu $$ μ on the compact abelian topological group $${\mathcal {M}}$$ M . Let $${\mathcal {B}}$$ B denote the Haar $$\sigma $$ σ -algebra on $${\mathcal {M}}$$ M . We show the natural extension of the dynamical system $$({\mathcal {M}}, {\mathcal {B}}, \mu , T_v)$$ ( M , B , μ , T v ) is Bernoulli and has entropy $$\frac{\#( k)}{\#( k^{\times })}\log (\#( k))$$ # ( k ) # ( k × ) log ( # ( k ) ) . The first of these two properties is used to study the average behaviour of the convergents arising from $$T_v$$ T v . Here for a finite set A its cardinality has been denoted by $$\# (A)$$ # ( A ) . In the case $$K = {\mathbb {Q}}_p$$ K = Q p , i.e. the field of p-adic numbers, the map $$T_v$$ T v reduces to the well-studied continued fraction map due to Schneider.


2021 ◽  
Vol 71 (5) ◽  
pp. 1063-1088
Author(s):  
Hasan Al-Ezeh ◽  
Amr Ali Al-Maktry ◽  
Sophie Frisch

Abstract The ring of dual numbers over a ring R is R[α] = R[x]/(x 2), where α denotes x + (x 2). For any finite commutative ring R, we characterize null polynomials and permutation polynomials on R[α] in terms of the functions induced by their coordinate polynomials (f 1, f 2 ∈ R[x], where f = f 1 + αf 2) and their formal derivatives on R. We derive explicit formulas for the number of polynomial functions and the number of polynomial permutations on ℤ p n [α] for n ≤ p (p prime).


Sign in / Sign up

Export Citation Format

Share Document