scholarly journals The multiplicative Jordan decomposition in the integral group ring Z[Q8×Cp]

2019 ◽  
Vol 534 ◽  
pp. 16-33
Author(s):  
Wentang Kuo ◽  
Wei-Liang Sun
1990 ◽  
Vol 42 (3) ◽  
pp. 383-394 ◽  
Author(s):  
Frank Röhl

In [5], Roggenkamp and Scott gave an affirmative answer to the isomorphism problem for integral group rings of finite p-groups G and H, i.e. to the question whether ZG ⥲ ZH implies G ⥲ H (in this case, G is said to be characterized by its integral group ring). Progress on the analogous question with Z replaced by the field Fp of p elements has been very little during the last couple of years; and the most far reaching result in this area in a certain sense - due to Passi and Sehgal, see [8] - may be compared to the integral case, where the group G is of nilpotency class 2.


2000 ◽  
Vol 43 (1) ◽  
pp. 60-62 ◽  
Author(s):  
Daniel R. Farkas ◽  
Peter A. Linnell

AbstractLet G be an arbitrary group and let U be a subgroup of the normalized units in ℤG. We show that if U contains G as a subgroup of finite index, then U = G. This result can be used to give an alternative proof of a recent result of Marciniak and Sehgal on units in the integral group ring of a crystallographic group.


2012 ◽  
Vol 11 (01) ◽  
pp. 1250016 ◽  
Author(s):  
VICTOR BOVDI ◽  
ALEXANDER KONOVALOV

We study the Zassenhaus conjecture for the normalized unit group of the integral group ring of the Mathieu sporadic group M24. As a consequence, for this group we give a positive answer to the question by Kimmerle about prime graphs.


2011 ◽  
Vol 10 (04) ◽  
pp. 711-725 ◽  
Author(s):  
J. Z. GONÇALVES ◽  
D. S. PASSMAN

Let ℤG be the integral group ring of the finite nonabelian group G over the ring of integers ℤ, and let * be an involution of ℤG that extends one of G. If x and y are elements of G, we investigate when pairs of the form (uk, m(x), uk, m(x*)) or (uk, m(x), uk, m(y)), formed respectively by Bass cyclic and *-symmetric Bass cyclic units, generate a free noncyclic subgroup of the unit group of ℤG.


1998 ◽  
Vol 50 (2) ◽  
pp. 401-411 ◽  
Author(s):  
Yuanlin Li

AbstractIn this paper, we first show that the central height of the unit group of the integral group ring of a periodic group is at most 2. We then give a complete characterization of the n-centre of that unit group. The n-centre of the unit group is either the centre or the second centre (for n ≥ 2).


Author(s):  
P. J. Hilton ◽  
D. Rees

The present paper has been inspired by a theorem of Swan(5). The theorem can be described as follows. Let G be a finite group and let Γ be its integral group ring. We shall denote by Z an infinite cyclic additive group considered as a left Γ-module by defining gm = m for all g in G and m in Z. By a Tate resolution of Z is meant an exact sequencewhere Xn is a projective module for − ∞ < n < + ∞, and.


Sign in / Sign up

Export Citation Format

Share Document