scholarly journals Bézier curves and C2 interpolation in Riemannian manifolds

2007 ◽  
Vol 148 (2) ◽  
pp. 111-127 ◽  
Author(s):  
Tomasz Popiel ◽  
Lyle Noakes
Author(s):  
Frank C. Park ◽  
Bahram Ravani

Abstract In this article we generalize the concept of Bézier curves to curved spaces, and illustrate this generalization with an application in kinematics. We show how De Casteljau’s algorithm for constructing Bézier curves can be extended in a natural way to Riemannian manifolds. We then consider a special class of Riemannian manifold, the Lie groups. Because of their algebraic group structure Lie groups admit an elegant, efficient recursive algorithm for constructing Bézier curves. Spatial displacements of a rigid body also form a Lie group, and can therefore be interpolated (in the Bezier sense) using this recursive algorithm. We apply this algorithm to the kinematic problem of trajectory generation or motion interpolation for a moving rigid body.


2021 ◽  
Author(s):  
Satyanarayana G. Manyam ◽  
David Casbeer ◽  
Isaac E. Weintraub ◽  
Dzung M. Tran ◽  
Justin M. Bradley ◽  
...  

2021 ◽  
Vol Accepted ◽  
Author(s):  
Bayram Şahin ◽  
Aslı Ayar

2021 ◽  
Vol 18 (4) ◽  
pp. 172988142110192
Author(s):  
Ben Zhang ◽  
Denglin Zhu

Innovative applications in rapidly evolving domains such as robotic navigation and autonomous (driverless) vehicles rely on motion planning systems that meet the shortest path and obstacle avoidance requirements. This article proposes a novel path planning algorithm based on jump point search and Bezier curves. The proposed algorithm consists of two main steps. In the front end, the improved heuristic function based on distance and direction is used to reduce the cost, and the redundant turning points are trimmed. In the back end, a novel trajectory generation method based on Bezier curves and a straight line is proposed. Our experimental results indicate that the proposed algorithm provides a complete motion planning solution from the front end to the back end, which can realize an optimal trajectory from the initial point to the target point used for robot navigation.


2020 ◽  
Vol 53 (2) ◽  
pp. 9276-9281
Author(s):  
Bahareh Sabetghadam ◽  
Rita Cunha ◽  
António Pascoal

Sign in / Sign up

Export Citation Format

Share Document