International Journal of Advanced Robotic Systems
Latest Publications


TOTAL DOCUMENTS

2848
(FIVE YEARS 670)

H-INDEX

37
(FIVE YEARS 8)

Published By Sage Publications

1729-8814, 1729-8806

2021 ◽  
Vol 18 (6) ◽  
pp. 172988142110576
Author(s):  
C. Mauricio Arteaga-Escamilla ◽  
Rafael Castro-Linares ◽  
Jaime Álvarez-Gallegos

This article addresses the time-varying leader–follower formation control problem for nonholonomic mobile robots, under communication and visibility constraints. Although the leader–follower formation control under visibility constraints has been studied, the elimination of the off-tracking effect has not been widely addressed yet. In this work, a new method to eliminate the off-tracking effect, considering the time-invariant formation as a tractor–trailer system, for unknown and circular tractor paths, taking into account the visibility constraints, is proposed. For a time-varying formation with not circular tractor’s path, the proposed method significantly reduces the off-tracking. Only the relative position and the relative orientation, provided by the on board monocular camera, are required. Thus, both the leader robot’s absolute position and the leader robot’s velocities are not needed. Furthermore, to avoid explicit communication among the robots, an extended state observer is implemented to estimate both the translational and the rotational leader’s velocity. In this way, the desired tasks are executed and achieved in a decentralized manner. For a time-varying formation, with constant leader robot’s velocities, the proposed control strategy, based on the kinematic model, guarantees that the formation errors asymptotically converge to the origin. Based on the Lyapunov theory, the stability proof of the formation errors dynamics is shown. Simulation results, considering time-varying leader robot’s velocities, show the efficiency of the proposed scheme.


2021 ◽  
Vol 18 (6) ◽  
pp. 172988142110606
Author(s):  
Zhenquan Fan ◽  
Xiaoyu Wang ◽  
Zijin Wang ◽  
Sijia Gao ◽  
Sheng Lin

Exoskeleton technology is more and more widely used in military, human rehabilitation, and other fields, but exoskeleton assisting mechanisms have problems such as high quality, concentrated driving sources, and poor flexibility. This article proposes a distributed variable stiffness joint power-assisted mechanism based on a laminated structure, which uses a giant magnetostrictive material as the driving source and the variable stiffness source of the structure. The distributed driving is realized by multiple driving units connected in series and parallel. Firstly, the drive unit stiffness matrix is deduced, and the expression equations of the cascaded total stiffness matrix of the drive module are obtained. After the simulation study, the curve of the stiffness of a single drive unit with a magnetic field and the stiffness of multiple drive units connected in series and parallel are in the absence of the magnetic field. The change curve of the stiffness of the booster module with the number of drive units under the excitation and saturation magnetic field excitation conditions is to achieve the effect of dynamically controlling the structural stiffness of the drive unit by controlling the size of the magnetic field and to obtain a general formula through data fitting. The number of drive units required under a fixed magnetic field excitation can ensure that the error is within 5%. The research results lay the foundation for further analysis of the distributed variable stiffness joint assist technology.


2021 ◽  
Vol 18 (6) ◽  
pp. 172988142110597
Author(s):  
Peng Liu ◽  
Xinzhou Qiao ◽  
Xuhui Zhang

This article aims to establish the relationship between the position and cable tension influencing factors and the stability, and propose a method for quantitative stability sensitivity assessment for a cable-based coal–gangue picking robot. Firstly, a structural stability measure approach is proposed for the cable-based coal–gangue picking robot. Secondly, a stability sensitivity analysis model is developed to investigate the stability sensitivity on the selected influencing factors based on the grey relational degree, where the influencing degree of each factor on the stability for the cable-based coal–gangue picking robot is explored with grey relational analysis. At last, a numerical study is carried out to demonstrate the stability measure approach and stability sensitivity analysis model for the cable-based coal–gangue picking robot was scientific and reasonable, where the end-grab position set which the robot can meet the predetermined stability requirements is obtained. And meanwhile, the correlation of each influencing factor on the stability for the robot is calculated. And the stability sensitivity simulation results show that (1) the correlation of the seven influencing factors on the stability are, in a descending order, cable tension T 2 > cable tension T 4 > cable tension T 3 > cable tension T 1 > z-direction displacement of the end-grab > x-direction displacement > y-direction displacement; (2) among the influencing factors, the cable tensions have greater influence on the stability of coal–gangue picking robot, and it is followed by the z-direction displacement of the end-grab, while y-direction displacement is found to have the minimal influence. This article provides a guiding direction for robust design of the sorting trajectory planning and control of the coal–gangue picking robots.


2021 ◽  
Vol 18 (6) ◽  
pp. 172988142110647
Author(s):  
Miguel Angel Funes-Lora ◽  
Eduardo Vega-Alvarado ◽  
Raúl Rivera-Blas ◽  
María Barbara Calva-Yáñez ◽  
Gabriel Sepúlveda-Cervantes

This study presents a novel algorithm implementation that optimizes manually recorded toolpaths with the use of a 3D-workpiece model to reduce manual error induced. The novel algorithm has three steps: workpiece declaration, manual toolpath declaration, and toolpath optimization using steepest descent algorithm. Steepest descent finds the surface route wherein the manually recorded toolpaths traverse over a 3D-workpiece surface. The optimized toolpaths were simulated and tested with an industrial robot showing minimal error compared to the desired optimized toolpaths. The results obtained from the presented implementation on three different trajectories demonstrate that the proposed methodology can reduce the manual error induced using as a reference the CAD-workpiece surface.


2021 ◽  
Vol 18 (6) ◽  
pp. 172988142110620
Author(s):  
Jiyuan Song ◽  
Aibin Zhu ◽  
Yao Tu ◽  
Jiajun Zou

In the task of carrying heavy objects, it is easy to cause back injuries and other musculoskeletal diseases. Although wearable robots are designed to reduce this danger, most existing exoskeletons use high-stiffness mechanisms, which are beneficial to load-bearing conduction, but this restricts the natural movement of the human body, thereby causing ergonomic risks. This article proposes a back exoskeleton composed of multiple elastic spherical hinges inspired by the biological spine. This spine exoskeleton can assist in the process of bending the body and ensure flexibility. We deduced the kinematics model of this mechanism and established an analytical biomechanical model of human–robot interaction. The mechanism of joint assistance of the spine exoskeleton was discussed, and experiments were conducted to verify the flexibility of the spine exoskeleton and the effectiveness of the assistance during bending.


2021 ◽  
Vol 18 (6) ◽  
pp. 172988142110585
Author(s):  
Yanhui Wei ◽  
Zhi Zheng ◽  
Qiangqiang Li ◽  
Jialin He

This study focuses on the method of trajectory planning of spatial obstacle avoidance for redundant manipulators based on configuration plane method. Firstly, according to the summary of the work configuration for redundant manipulator, kinematics analysis method based on configuration plane is proposed, which helps to establish a basic kinematics model of configuration plane. Secondly, the analysis of velocity is conducted and velocity iterative formula is derived. Then, the process of the trajectory planning for redundant manipulator based on the velocity distribution of configuration plane is given, during which some key procedures such as the determination of work configuration, achieving spatial obstacle avoidance, and analysis of velocity distribution are deduced. Finally, the simulation of spatial circle trajectory planning for the 7-degree-of-freedom redundant manipulator is done. The experimental results show that the proposed trajectory planning method for redundant manipulator can satisfy the requirements of complex spatial obstacle avoidance and increase the controllability of the trajectory between spatial interpolation points of the manipulator’s end effector.


2021 ◽  
Vol 18 (6) ◽  
pp. 172988142110637
Author(s):  
Huaimin Liu ◽  
Xiangjiang Wang ◽  
Meng Li

The safe disposal of nuclear waste in radioactive environment urgently needs cost-effective approaches. Toward this goal, this article developed a method to external force estimation based on the identified model without force sensors. Firstly, the mathematical model including joint friction was obtained and transformed into the linear combination of unknown parameter to be estimated. Secondly, the unknown parameters were identified based on the improved particle swarm optimization algorithm, the identification procedure was implemented by optimizing the excitation trajectories to excite joint motion and sampling relevant data. Identified results were compared with the biogeography-based optimization algorithm and the cuckoo search algorithm. Then, the identified dynamic parameter was applied to external force estimation. Finally, the verification of external force estimation has been carried out using the Kinova Jaco2 robot manipulator, and the experimental results showed that the external forces by the proposed method could be estimated with an root mean square error of 0.7 N.


2021 ◽  
Vol 18 (6) ◽  
pp. 172988142110374
Author(s):  
Li Tang ◽  
Yue Wang ◽  
Qimeng Tan ◽  
Rong Xiong

In the long-term deployment of mobile robots, changing appearance brings challenges for localization. When a robot travels to the same place or restarts from an existing map, global localization is needed, where place recognition provides coarse position information. For visual sensors, changing appearances such as the transition from day to night and seasonal variation can reduce the performance of a visual place recognition system. To address this problem, we propose to learn domain-unrelated features across extreme changing appearance, where a domain denotes a specific appearance condition, such as a season or a kind of weather. We use an adversarial network with two discriminators to disentangle domain-related features and domain-unrelated features from images, and the domain-unrelated features are used as descriptors in place recognition. Provided images from different domains, our network is trained in a self-supervised manner which does not require correspondences between these domains. Besides, our feature extractors are shared among all domains, making it possible to contain more appearance without increasing model complexity. Qualitative and quantitative results on two toy cases are presented to show that our network can disentangle domain-related and domain-unrelated features from given data. Experiments on three public datasets and one proposed dataset for visual place recognition are conducted to illustrate the performance of our method compared with several typical algorithms. Besides, an ablation study is designed to validate the effectiveness of the introduced discriminators in our network. Additionally, we use a four-domain dataset to verify that the network can extend to multiple domains with one model while achieving similar performance.


2021 ◽  
Vol 18 (6) ◽  
pp. 172988142110606
Author(s):  
Xun Li ◽  
Zhi Zhang ◽  
Dan-Dan Wu ◽  
Michel Medema ◽  
Alexander Lavozik

The problem of global optimal evaluation for multi-robot allocation has gained attention constantly, especially in a multi-objective environment, but most algorithms based on swarm intelligence are difficult to give a convergent result. For solving the problem, we established a Global Optimal Evaluation of Revenue method of multi-robot for multi-tasks based on the real textile combing production workshop, consumption, and different task characteristics of mobile robots. The Global Optimal Evaluation of Revenue method could traversal calculates the profit of each robot corresponding to different tasks with global traversal over a finite set, then an optimization result can be converged to the global optimal value avoiding the problem that individual optimization easy to fall into local optimal results. In the numerical simulation, for fixed set of multi-object and multi-task, we used different numbers of robots allocation operation. We then compared with other methods: Hungarian, the auction method, and the method based on game theory. The results showed that Global Optimal Evaluation of Revenue reduced the number of robots used by at least 17%, and the delay time could be reduced by at least 16.23%.


2021 ◽  
Vol 18 (6) ◽  
pp. 172988142110593
Author(s):  
Ivan Kholodilin ◽  
Yuan Li ◽  
Qinglin Wang ◽  
Paul David Bourke

Recent advancements in deep learning require a large amount of the annotated training data containing various terms and conditions of the environment. Thus, developing and testing algorithms for the navigation of mobile robots can be expensive and time-consuming. Motivated by the aforementioned problems, this article presents a photorealistic simulator for the computer vision community working with omnidirectional vision systems. Built using unity, the simulator integrates sensors, mobile robots, and elements of the indoor environment and allows one to generate synthetic photorealistic data sets with automatic ground truth annotations. With the aid of the proposed simulator, two practical applications are studied, namely extrinsic calibration of the vision system and three-dimensional reconstruction of the indoor environment. For the proposed calibration and reconstruction techniques, the processes themselves are simple, robust, and accurate. Proposed methods are evaluated experimentally with data generated by the simulator. The proposed simulator and supporting materials are available online: http://www.ilabit.org .


Sign in / Sign up

Export Citation Format

Share Document