Promoting Diels-Alder reactions to produce bio-BTX: Co-aromatization of textile waste and plastic waste over USY zeolite

2021 ◽  
pp. 127966
Author(s):  
Jia Wang ◽  
Jianchun Jiang ◽  
Jinhua Ding ◽  
Xiaobo Wang ◽  
Yunjuan Sun ◽  
...  
2012 ◽  
Vol 116 (25) ◽  
pp. 13661-13670 ◽  
Author(s):  
A. Olmos ◽  
S. Rigolet ◽  
B. Louis ◽  
P. Pale

Synlett ◽  
1989 ◽  
Vol 1989 (01) ◽  
pp. 30-32
Author(s):  
Thomas V. Lee ◽  
Alistair J. Leigh ◽  
Christopher B. Chapleo

2009 ◽  
Author(s):  
Pedro Mancini ◽  
Maria Kneeteman ◽  
Claudia Della Rosa
Keyword(s):  

2011 ◽  
Vol 3 (8) ◽  
pp. 253-255
Author(s):  
Neha Patni ◽  
◽  
Pujita Yadava ◽  
Anisha Agarwal ◽  
Vyoma Maroo
Keyword(s):  

2016 ◽  
Vol 10 (4) ◽  
pp. 465-472 ◽  
Author(s):  
Debora Almeida ◽  
◽  
Maria de Fatima Marques ◽  

In the present work, the pyrolysis of polypropylene and polyethylene was evaluated with and without the addition of niobium oxide as catalyst by means of thermogravimetric analysis and experiments in a glass reactor. The results revealed that niobium oxide performed well in the pyrolysis of both polypropylene and polyethylene separately. For the mixture of polypropylene with polyethylene, the catalyst reduced the pyrolysis time.


2013 ◽  
Vol 1 ◽  
Author(s):  
Silvia Reboredo ◽  
Alejandro Parra ◽  
José Alemán
Keyword(s):  

2020 ◽  
Author(s):  
Radu Talmazan ◽  
Klaus R. Liedl ◽  
Bernhard Kräutler ◽  
Maren Podewitz

We analyze the mechanism of the topochemically controlled difunctionalization of C60 and anthracene, where an anthracene molecule is transferred from one C60 monoadduct to another one under exclusive formation of equal amounts of C60 and the difficult to make antipodal C60 bisadduct. Our herein disclosed dispersion corrected DFT studies show the anthracene transfer to take place in a synchronous retro Diels-Alder/Diels-Alder reaction: an anthracene molecule dissociates from one fullerene under formation of an intermediate, while already undergoing stabilizing interactions with both neighboring fullerenes, facilitating the reaction kinetically. In the intermediate, a planar anthracene molecule is sandwiched between two neighboring fullerenes and forms equally strong "double-decker" type pi-pi stacking interactions with both of these fullerenes. Analysis with the distorsion interaction model shows that the anthracene unit of the intermediate is almost planar with minimal distorsions. This analysis sheds light on the existence of noncovalent interactions engaging both faces of a planar polyunsaturated ring and two convex fullerene surfaces in an unprecedented 'inverted sandwich' structure. Hence, it sheds light on new strategies to design functional fullerene based materials.<br>


Sign in / Sign up

Export Citation Format

Share Document