catalytic cracking
Recently Published Documents


TOTAL DOCUMENTS

2878
(FIVE YEARS 541)

H-INDEX

72
(FIVE YEARS 12)

Fuel ◽  
2022 ◽  
Vol 315 ◽  
pp. 123252
Author(s):  
Linjie Guan ◽  
Chengming Huang ◽  
Dingmei Han ◽  
Binbin He ◽  
Linhua Zhu ◽  
...  

2022 ◽  
Vol 227 ◽  
pp. 107130
Author(s):  
Beatriz Valle ◽  
Roberto Palos ◽  
Javier Bilbao ◽  
Ana G. Gayubo
Keyword(s):  

Fuel ◽  
2022 ◽  
Vol 309 ◽  
pp. 122055
Author(s):  
Roberto Palos ◽  
Elena Rodríguez ◽  
Alazne Gutiérrez ◽  
Javier Bilbao ◽  
José M. Arandes

Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 98
Author(s):  
Galina Y. Nazarova ◽  
Elena N. Ivashkina ◽  
Emiliya D. Ivanchina ◽  
Maria Y. Mezhova

Changes in the quality of the feedstocks generated by involving various petroleum fractions in catalytic cracking significantly affect catalyst deactivation, which stems from coke formed on the catalyst surface. By conducting experimental studies on feedstocks and catalysts, as well as using industrial data, we studied how the content of saturates, aromatics and resins (SAR) in feedstock and the main process variables, including temperature, consumptions of the feedstock, catalyst and slops, influence the formation of catalytic coke. We also determined catalyst deactivation patterns using TG-DTA, N2 adsorption and TPD, which were further used as a basis for a kinetic model of catalytic cracking. This model helps predict the changes in reactions rates caused by coke formation and, also, evaluates quantitatively how group characteristics of the feedstock, the catalyst-to-oil ratio and slop flow influence the coke content on the catalyst and the degree of catalyst deactivation. We defined that a total loss of acidity changes from 8.6 to 30.4 wt% for spent catalysts, and this depends on SAR content in feedstock and process variables. The results show that despite enriching the feedstock by saturates, the highest coke yields (4.6–5.2 wt%) may be produced due to the high content of resins (2.1–3.5 wt%).


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 388
Author(s):  
Thabang W. Selalame ◽  
Raj Patel ◽  
Iqbal M. Mujtaba ◽  
Yakubu M. John

Heavy petroleum industries, including the Fluid Catalytic Cracking (FCC) unit, are among some of the biggest contributors to global greenhouse gas (GHG) emissions. The FCC unit’s regenerator is where these emissions originate mostly, meaning the operation of FCC regenerators has come under scrutiny in recent years due to the global mitigation efforts against climate change, affecting both current operations and the future of the FCC unit. As a result, it is more important than ever to develop models that are accurate and reliable at predicting emissions of various greenhouse gases to keep up with new reporting guidelines that will help optimise the unit for increased coke conversion and lower operating costs. Part 1 of this paper was dedicated to reviewing the riser section of the FCC unit. Part 2 reviews traditional modelling methodologies used in modelling and simulating the FCC regenerator. Hydrodynamics and kinetics of the regenerator are discussed in terms of experimental data and modelling. Modelling of constitutive parts that are important to the FCC unit, such as gas–solid cyclones and catalyst transport lines, are also considered. This review then identifies areas where the current generation of models of the regenerator can be improved for the future. Parts 1 and 2 are such that a comprehensive review of the literature on modelling the FCC unit is presented, showing the guidance and framework followed in building models for the unit.


Author(s):  
Manoel Raimundo dos Santos Jr. ◽  
Elinéia Castro Costa ◽  
Caio Campos Ferreira ◽  
Lucas Pinto Bernar ◽  
Marcilene Paiva da Silva ◽  
...  

In this work, the deoxygenation of organic liquid products (OLP) obtained by thermal catalytic cracking of palm oil at 450 °C, 1.0 atmosphere, with 10% (wt.) Na2CO3 as catalyst, in multistage countercurrent absorber columns using supercritical carbon dioxide (SC-CO2) as solvent, with Aspen-HYSYS process simulator was systematically investigated. In a previous study, the thermodynamic data basis and EOS modeling necessary to simulate the deoxygenation of OLP has been presented [Molecules 2021, 26, 4382. https://doi.org/10.3390/molecules26144382]. This work address a new flowsheet, consisting of 03 absorber columns, 10 expansions valves, 10 flash drums, 08 heat exchanges, 01 pressure pump, and 02 make-up of CO2, aiming to improve the deacidification of OLP. The simulation was performed at 333 K, 140 bar, and (S/F) = 17; 350 K, 140 bar, and (S/F) = 38; 333 K, 140 bar, and (S/F) = 25. The simulation shows that 81.49% of OLP could be recovered and the concentrations of hydrocarbons in the extracts of absorber-01 and absorber-02 were 96.95 and 92.78% (wt.) in solvent-free basis, while the bottom stream of absorber-03 was enriched in oxygenates compounds with concentrations up to 32.66% (wt.) in solvent-free basis, showing that organic liquid products (OLP) was deacidified and SC-CO2 was able to deacidify OLP and to obtain fractions with lower olefins content. The best deacidifying conditions was obtained at 333 K, 140 bar, and (S/F) = 17.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 308
Author(s):  
Thabang W. Selalame ◽  
Raj Patel ◽  
Iqbal M. Mujtaba ◽  
Yakubu M. John

Heavy petroleum industries, including the fluid catalytic cracking (FCC) unit, are useful for producing fuels but they are among some of the biggest contributors to global greenhouse gas (GHG) emissions. The recent global push for mitigation efforts against climate change has resulted in increased legislation that affects the operations and future of these industries. In terms of the FCC unit, on the riser side, more legislation is pushing towards them switching from petroleum-driven energy sources to more renewable sources such as solar and wind, which threatens the profitability of the unit. On the regenerator side, there is more legislation aimed at reducing emissions of GHGs from such units. As a result, it is more important than ever to develop models that are accurate and reliable, that will help optimise the unit for maximisation of profits under new regulations and changing trends, and that predict emissions of various GHGs to keep up with new reporting guidelines. This article, split over two parts, reviews traditional modelling methodologies used in modelling and simulation of the FCC unit. In Part I, hydrodynamics and kinetics of the riser are discussed in terms of experimental data and modelling approaches. A brief review of the FCC feed is undertaken in terms of characterisations and cracking reaction chemistry, and how these factors have affected modelling approaches. A brief overview of how vaporisation and catalyst deactivation are addressed in the FCC modelling literature is also undertaken. Modelling of constitutive parts that are important to the FCC riser unit such as gas-solid cyclones, disengaging and stripping vessels, is also considered. This review then identifies areas where current models for the riser can be improved for the future. In Part II, a similar review is presented for the FCC regenerator system.


Author(s):  
Xia Jiang ◽  
Feng Long ◽  
Jiaping Zhao ◽  
Peng Liu ◽  
Jianchun Jiang ◽  
...  

Abstract: Molecular structural modification was a critical step for the production of high-quality biofuel. In this study, it was found that catalytic cracking followed by products isomerization is an effective...


Sign in / Sign up

Export Citation Format

Share Document