The effects of head and body positioning on upper airway collapsibility in normal subjects who received midazolam sedation

2006 ◽  
Vol 18 (3) ◽  
pp. 185-193 ◽  
Author(s):  
Hidetoshi Ikeda ◽  
Takao Ayuse ◽  
Kumiko Oi
2011 ◽  
Vol 115 (2) ◽  
pp. 273-281 ◽  
Author(s):  
Masato Kobayashi ◽  
Takao Ayuse ◽  
Yuko Hoshino ◽  
Shinji Kurata ◽  
Shunji Moromugi ◽  
...  

Background Head elevation can restore airway patency during anesthesia, although its effect may be offset by concomitant bite opening or accidental neck flexion. The aim of this study is to examine the effect of head elevation on the passive upper airway collapsibility during propofol anesthesia. Method Twenty male subjects were studied, randomized to one of two experimental groups: fixed-jaw or free-jaw. Propofol infusion was used for induction and to maintain blood at a constant target concentration between 1.5 and 2.0 μg/ml. Nasal mask pressure (PN) was intermittently reduced to evaluate the upper airway collapsibility (passive PCRIT) and upstream resistance (RUS) at each level of head elevation (0, 3, 6, and 9 cm). The authors measured the Frankfort plane (head flexion) and the mandible plane (jaw opening) angles at each level of head elevation. Analysis of variance was used to determine the effect of head elevation on PCRIT, head flexion, and jaw opening within each group. Results In both groups the Frankfort plane and mandible plane angles increased with head elevation (P < 0.05), although the mandible plane angle was smaller in the free-jaw group (i.e., increased jaw opening). In the fixed-jaw group, head elevation decreased upper airway collapsibility (PCRIT ~ -7 cm H₂O at greater than 6 cm elevation) compared with the baseline position (PCRIT ~ -3 cm H₂O at 0 cm elevation; P < 0.05). Conclusion : Elevating the head position by 6 cm while ensuring mouth closure (centric occlusion) produces substantial decreases in upper airway collapsibility and maintains upper airway patency during anesthesia.


1989 ◽  
Vol 66 (4) ◽  
pp. 1800-1808 ◽  
Author(s):  
L. Wiegand ◽  
C. W. Zwillich ◽  
D. P. White

Upper airway resistance (UAR) increases in normal subjects during the transition from wakefulness to sleep. To examine the influence of sleep on upper airway collapsibility, inspiratory UAR (epiglottis to nares) and genioglossus electromyogram (EMG) were measured in six healthy men before and during inspiratory resistive loading. UAR increased significantly (P less than 0.05) from wakefulness to non-rapid-eye-movement (NREM) sleep [3.1 +/- 0.4 to 11.7 +/- 3.5 (SE) cmH2O.1–1.s]. Resistive load application during wakefulness produced small increments in UAR. However, during NREM sleep, UAR increased dramatically with loading in four subjects although two subjects demonstrated little change. This increment in UAR from wakefulness to sleep correlated closely with the rise in UAR during loading while asleep (e.g., load 12: r = 0.90, P less than 0.05), indicating consistent upper airway behavior during sleep. On the other hand, no measurement of upper airway behavior during wakefulness was predictive of events during sleep. Although the influence of sleep on the EMG was difficult to assess, peak inspiratory genioglossus EMG clearly increased (P less than 0.05) after load application during NREM sleep. Finally, minute ventilation fell significantly from wakefulness values during NREM sleep, with the largest decrement in sleeping minute ventilation occurring in those subjects having the greatest awake-to-sleep increment in UAR (r = -0.88, P less than 0.05). We conclude that there is marked variability among normal men in upper airway collapsibility during sleep.


SLEEP ◽  
2011 ◽  
Vol 34 (6) ◽  
pp. 717-724 ◽  
Author(s):  
Helena Larramona Carrera ◽  
Joseph M. McDonough ◽  
Paul R. Gallagher ◽  
Swaroop Pinto ◽  
John Samuel ◽  
...  

1990 ◽  
Vol 141 (6) ◽  
pp. 1569-1577 ◽  
Author(s):  
Michael J. Wasicko ◽  
Douglas A. Hutt ◽  
Richard A. Parisi ◽  
Judith A. Neubauer ◽  
Reuben Mezrich ◽  
...  

2016 ◽  
Vol 48 (5) ◽  
pp. 1340-1350 ◽  
Author(s):  
Luigi Taranto-Montemurro ◽  
Scott A. Sands ◽  
Bradley A. Edwards ◽  
Ali Azarbarzin ◽  
Melania Marques ◽  
...  

We recently demonstrated that desipramine reduces the sleep-related loss of upper airway dilator muscle activity and reduces pharyngeal collapsibility in healthy humans without obstructive sleep apnoea (OSA). The aim of the present physiological study was to determine the effects of desipramine on upper airway collapsibility and apnoea–hypopnea index (AHI) in OSA patients.A placebo-controlled, double-blind, randomised crossover trial in 14 OSA patients was performed. Participants received treatment or placebo in randomised order before sleep. Pharyngeal collapsibility (critical collapsing pressure of the upper airway (Pcrit)) and ventilation under both passive (V′0,passive) and active (V′0,active) upper airway muscle conditions were evaluated with continuous positive airway pressure (CPAP) manipulation. AHI was quantified off CPAP.Desipramine reduced activePcrit(median (interquartile range) −5.2 (4.3) cmH2O on desipramineversus−1.9 (2.7) cmH2O on placebo; p=0.049) but not passivePcrit(−2.2 (3.4)versus−0.7 (2.1) cmH2O; p=0.135). A greater reduction in AHI occurred in those with minimal muscle compensation (defined asV′0,active−V′0,passive) on placebo (r=0.71, p=0.009). The reduction in AHI was driven by the improvement in muscle compensation (r=0.72, p=0.009).In OSA patients, noradrenergic stimulation with desipramine improves pharyngeal collapsibility and may be an effective treatment in patients with minimal upper airway muscle compensation.


SLEEP ◽  
2009 ◽  
Vol 32 (9) ◽  
pp. 1173-1181 ◽  
Author(s):  
Jingtao Huang ◽  
Laurie R. Karamessinis ◽  
Michelle E. Pepe ◽  
Stephen M. Glinka ◽  
John M. Samuel ◽  
...  

2016 ◽  
Vol 2 (3) ◽  
pp. 00043-2016 ◽  
Author(s):  
Christian Guilleminault ◽  
Shehlanoor Huseni ◽  
Lauren Lo

A short lingual frenulum has been associated with difficulties in sucking, swallowing and speech. The oral dysfunction induced by a short lingual frenulum can lead to oral-facial dysmorphosis, which decreases the size of upper airway support. Such progressive change increases the risk of upper airway collapsibility during sleep.Clinical investigation of the oral cavity was conducted as a part of a clinical evaluation of children suspected of having sleep disordered breathing (SDB) based on complaints, symptoms and signs. Systematic polysomnographic evaluation followed the clinical examination. A retrospective analysis of 150 successively seen children suspected of having SDB was performed, in addition to a comparison of the findings between children with and without short lingual frenula.Among the children, two groups of obstructive sleep apnoea syndrome (OSAS) were found: 1) absence of adenotonsils enlargement and short frenula (n=63); and 2) normal frenula and enlarged adenotonsils (n=87). Children in the first group had significantly more abnormal oral anatomy findings, and a positive family of short frenulum and SDB was documented in at least one direct family member in 60 cases.A short lingual frenulum left untreated at birth is associated with OSAS at later age, and a systematic screening for the syndrome should be conducted when this anatomical abnormality is recognised.


Sign in / Sign up

Export Citation Format

Share Document