European Respiratory Journal
Latest Publications


TOTAL DOCUMENTS

11179
(FIVE YEARS 1922)

H-INDEX

198
(FIVE YEARS 41)

Published By European Respiratory Society

1399-3003, 0903-1936

2022 ◽  
pp. 2101865
Author(s):  
Taha Al-Shaikhly ◽  
Ryan C. Murphy ◽  
Andrew Parker ◽  
Ying Lai ◽  
Matthew C. Altman ◽  
...  

Eosinophils are implicated as effector cells in asthma but the functional implications of the precise location of eosinophils in the airway wall is poorly understood. We aimed to quantify eosinophils in the different compartments of the airway wall and associate these findings with clinical features of asthma and markers of airway inflammation.In this cross-sectional study, we utilised design-based stereology to accurately partition the numerical density of eosinophils in both the epithelial compartment and the subepithelial space (airway wall area below the basal lamina including the submucosa) in individuals with and without asthma and related these findings to airway hyperresponsiveness (AHR) and features of airway inflammation.Intraepithelial eosinophils were linked to the presence of asthma and endogenous AHR, the type of AHR that is most specific for asthma. In contrast, both intraepithelial and subepithelial eosinophils were associated with type-2 (T2) inflammation, with the strongest association between IL5 expression and intraepithelial eosinophils. Eosinophil infiltration of the airway wall was linked to a specific mast cell phenotype that has been described in asthma. We found that IL-33 and IL-5 additively increased cysteinyl leukotriene (CysLT) production by eosinophils and that the CysLT LTC4 along with IL-33 increased IL13 expression in mast cells and altered their protease profile.We conclude that intraepithelial eosinophils are associated with endogenous AHR and T2 inflammation and may interact with intraepithelial mast cells via CysLTs to regulate airway inflammation.


2022 ◽  
pp. 2101634
Author(s):  
Jeanne-Marie Perotin ◽  
Gabrielle Wheway ◽  
Kamran Tariq ◽  
Adnan Azim ◽  
Robert A Ridley ◽  
...  

BackgroundSevere asthma is associated with multiple co-morbidities, including gastro-oesophageal reflux disease (GORD) which can contribute to exacerbation frequency and poor quality of life. Since epithelial dysfunction is an important feature in asthma, we hypothesised that in severe asthma the bronchial epithelium is more susceptible to the effects of acid reflux.MethodsWe developed an in vitro model of GORD using differentiated bronchial epithelial cells (BECs) from normal or severe asthmatic donors exposed to a combination of pepsin, acid pH, and bile acids using a multiple challenge protocol (MCP-PAB). We also analysed bronchial biopsies and undertook RNA-sequencing of bronchial brushings from controls and severe asthmatics without or with GORD.ResultsExposure of BECs to the MCP-PAB caused structural disruption, increased permeability, IL-33 expression, inflammatory mediator release and changes in gene expression for multiple biological processes. Cultures from severe asthmatics were significantly more affected than those from healthy donors. Analysis of bronchial biopsies confirmed increased IL-33 expression in severe asthmatics with GORD. RNA-sequencing of bronchial brushings from this group identified 15 of the top 37 dysregulated genes found in MCP-PAB treated BECs, including genes involved in oxidative stress responses.ConclusionsBy affecting epithelial permeability, GORD may increase exposure of the airway submucosa to allergens and pathogens, resulting in increased risk of inflammation and exacerbations. Clinical implication: These results suggest the need for research into alternative therapeutic management of GORD in severe asthma.


2022 ◽  
pp. 2004361
Author(s):  
Jopeth Ramis ◽  
Robert Middlewick ◽  
Francesco Pappalardo ◽  
Jennifer T. Cairns ◽  
Iain D. Stewart ◽  
...  

Airway smooth muscle cells (ASM) are fundamental to asthma pathogenesis, influencing bronchoconstriction, airway hyper-responsiveness, and airway remodelling. Extracellular matrix (ECM) can influence tissue remodelling pathways, however, to date no study has investigated the effect of ASM ECM stiffness and crosslinking on the development of asthmatic airway remodelling. We hypothesised that TGFβ activation by ASM is influenced by ECM in asthma and sought to investigate the mechanisms involved. This study combines in vitro and in vivo approaches: human ASM cells were used in vitro to investigate basal TGFβ activation and expression of ECM crosslinking enzymes. Human bronchial biopsies from asthmatic and non-asthmatic donors were used to confirm LOXL2 expression ASM. A chronic ovalbumin model of asthma was used to study the effect of LOXL2 inhibition on airway remodelling. We found that ASM cells from asthmatics activated more TGFβ basally than non-asthmatic controls and that diseased cell-derived ECM influences levels of TGFβ activated. Our data demonstrate that the ECM crosslinking enzyme LOXL2 is increased in asthmatic ASM cells and in bronchial biopsies. Crucially, we show that LOXL2 inhibition reduces ECM stiffness and TGFβ activation in vitro, and can reduce subepithelial collagen deposition and ASM thickness, two features of airway remodelling, in an ovalbumin mouse model of asthma. These data are the first to highlight a role for LOXL2 in the development of asthmatic airway remodelling and suggest that LOXL2 inhibition warrants further investigation as a potential therapy to reduce remodelling of the airways in severe asthma.


2022 ◽  
pp. 2102838
Author(s):  
Rishika Banydeen ◽  
Giuseppe Vergaro ◽  
Antoine Deney ◽  
Astrid Monfort ◽  
Michele Emdin ◽  
...  

2022 ◽  
pp. 2102548
Author(s):  
Michele D'Alto ◽  
Marco Di Maio ◽  
Emanuele Romeo ◽  
Paola Argiento ◽  
Ettore Blasi ◽  
...  

BackgroundAccording to current guidelines, the diagnosis of pulmonary hypertension (PH) relies on echocardiographic probability followed by right heart catheterization. How echocardiography predicts PH recently re-defined by a mean pulmonary artery pressure (mPAP) >20 mmHg instead of ≥25 mmHg and pulmonary vascular disease defined by a pulmonary vascular resistance (PVR) >3 or >2 Wood units has not been established.MethodsA total of 278 patients referred for PH underwent a comprehensive echocardiography followed by a right heart catheterization. Fifteen patients (5.4%) were excluded because of insufficient quality echocardiography.ResultsWith PH defined by a mPAP >20 mmHg, 23 patients had no PH, 146 had pre-capillary and 94 post-capillary PH. At univariate analysis, maximum velocity of tricuspid regurgitation (TRV) ≥2.9 and ≤3.4 m s−1, left ventricle (LV) eccentricity index >1.1, right ventricle (RV) outflow tract (OT) notching or acceleration time <105 ms, RV-LV basal diameter >1 and PA diameter predicted PH, whereas inferior vena cava diameter and right atrial area did not. At multivariable analysis, only TRV ≥2.9 m s−1 independently predicted PH. Additional independent prediction of PVR >3 Wood units was offered by LV eccentricity index >1.1 and RVOT acceleration time <105 ms and/or notching, but with no improvement of optimal combination of specificity and sensibility or positive prediction.ConclusionsEchocardiography as recommended in current guidelines can be used to assess the probability of re-defined PH in a referral center. However, the added value of indirect signs is modest and sufficient quality echocardiographic signals may not be recovered in some patients.


2022 ◽  
pp. 2101994
Author(s):  
Aabida Saferali ◽  
Dandi Qiao ◽  
Wonji Kim ◽  
Karen Raraigh ◽  
Hara Levy ◽  
...  

IntroductionLoss of function variants in both copies of the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF); however, there is evidence that reduction in CFTR function due to the presence of one deleterious variant can have clinical consequences. Here, we hypothesize that CFTR variants in individuals with a history of smoking are associated with COPD and related phenotypes.MethodsWhole genome sequencing was performed through the NHLBI TOPMed program in 8597 subjects from the COPDGene study, an observational study of current and former smokers. We extracted clinically annotated CFTR variants and performed single variant and variant-set testing for COPD and related phenotypes. Replication was performed in 2,118 subjects from the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) study.ResultsWe identified 301 coding variants within the CFTR gene boundary: 147 of these have been reported in individuals with CF, including 36 CF-causing variants. We found that CF causing variants were associated with chronic bronchitis in variant-set testing in COPDGene (one sided p-value=0.0025, OR=1.53) and in meta-analysis of COPDGene and ECLIPSE (one sided p-value=0.0060, OR=1.52). Single variant testing revealed that the F508del variant was associated with chronic bronchitis in COPDGene (one sided p-value=0.015, OR=1.47). In addition, we identified 32 subjects with two or more CFTR variants on separate alleles, and these subjects were enriched for COPD cases (p=0.010).ConclusionsCigarette smokers who carry one deleterious CFTR variant have higher rates of chronic bronchitis, while presence of two CFTR variants may be associated with COPD. These results indicate that genetically-mediated reduction in CFTR function contributes to COPD related phenotypes, in particular chronic bronchitis.


2022 ◽  
pp. 2101821
Author(s):  
Jenna McNeill ◽  
Ariel Chernofsky ◽  
Matthew Nayor ◽  
Farbod N. Rahaghi ◽  
Raul San Jose Estepar ◽  
...  

IntroductionCardiorespiratory fitness is not limited by pulmonary mechanical reasons in the majority of adults. However, the degree to which lung function contributes to exercise response patterns among ostensibly healthy individuals remains unclear.MethodsWe examined 2314 Framingham Heart Study participants who underwent cardiopulmonary exercise testing (CPET) and pulmonary function testing. We investigated the association of FEV1, FVC, FEV1/FVC and DLCO with the primary outcome of peak VO2, along with other CPET parameters using multivariable linear regression. Finally, we investigated the association of total and peripheral pulmonary blood vessel volume with peak VO2.ResultsWe found lower FEV1, FVC and DLCO were associated with lower peak VO2. For example, a one-liter lower FEV1 and FVC were associated with 7.1% (95% CI: 5.1%, 9.1%) and 6.0% (95% CI: 4.3%, 7.7%) lower peak VO2, respectively. By contrast, FEV1/FVC ratio was not associated with peak VO2. Lower lung function was associated with lower oxygen uptake efficiency slope oxygen pulse slope, VO2 at AT, VE at AT and breathing reserve. In addition, lower total and peripheral pulmonary blood vessel volume were associated with a lower peak VO2.ConclusionIn a large, community-based cohort of adults, we found lower FEV1, FVC and DLCO were associated with lower exercise capacity, as well as oxygen uptake efficiency slope and ventilatory efficiency. In addition, lower total and peripheral pulmonary blood vessel volume were associated with lower peak VO2. These findings underscore the importance of lung function and blood vessel volume as contributors to overall exercise capacity.


2021 ◽  
Vol 59 (1) ◽  
pp. 2102018
Author(s):  
Richard J. Russell ◽  
Christopher E. Brightling

Sign in / Sign up

Export Citation Format

Share Document