healthy humans
Recently Published Documents





2022 ◽  
Vol 31 (163) ◽  
pp. 210074
Paolo B. Dominelli ◽  
Yannick Molgat-Seon

In this review, we detail how the pulmonary system's response to exercise is impacted by both sex and gender in healthy humans across the lifespan. First, the rationale for why sex and gender differences should be considered is explored, and then anatomical differences are highlighted, namely that females typically have smaller lungs and airways than males. Thereafter, we describe how these anatomical differences can impact functional aspects such as respiratory muscle energetics and activation, mechanical ventilatory constraints, diaphragm fatigue, and pulmonary gas exchange in healthy adults and children. Finally, we detail how gender can impact the pulmonary response to exercise.

Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 42
Xinlong Wang ◽  
Liang-Chieh Ma ◽  
Sadra Shahdadian ◽  
Anqi Wu ◽  
Nghi Cong Dung Truong ◽  

Billions of neurons in the human brain form neural networks with oscillation rhythms. Infra-slow oscillation (ISO) presents three main physiological sources: endogenic, neurogenic, and myogenic vasomotions. Having an in vivo methodology for the absolute quantification of ISO from the human brain can facilitate the detection of brain abnormalities in cerebral hemodynamic and metabolic activities. In this study, we introduced a novel measurement-plus-analysis framework for the non-invasive quantification of prefrontal ISO by (1) taking dual-channel broadband near infrared spectroscopy (bbNIRS) measurements from 12 healthy humans during a 6-min rest and 4-min post transcranial photobiomodulation (tPBM) and (2) performing wavelet transform coherence (WTC) analysis on the measured time series data. The WTC indexes (IC, between 0 and 1) enabled the assessment of ipsilateral hemodynamic-metabolic coherence and bilateral functional connectivity in each ISO band of the human prefrontal cortex. At rest, bilateral hemodynamic connectivity was consistent across the three ISO bands (IC ≅ 0.66), while bilateral metabolic connectivity was relatively weaker. For post-tPBM/sham comparison, our analyses revealed three key findings: 8-min, right-forehead, 1064-nm tPBM (1) enhanced the amplitude of metabolic oscillation bilaterally, (2) promoted the bilateral metabolic connectivity of neurogenic rhythm, and (3) made the main effect on endothelial cells, causing alteration of hemodynamic-metabolic coherence on each side of the prefrontal cortex.

2022 ◽  
Chengnan Guo ◽  
Yixi Xu ◽  
Yange Ma ◽  
Xin Xu ◽  
Fang Peng ◽  

Although previous studies demonstrate that trehalose can help maintain glucose homeostasis in healthy humans, its role and joint effect with glutamate on diabetic retinopathy (DR) remain unclear. We aimed to comprehensively quantify the associations of trehalose and glutamate with DR. This study included 69 pairs of DR and matched type 2 diabetic (T2D) patients. Serum trehalose and glutamate were determined via ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry system. Covariates were collected by a standardized questionnaire, clinical examinations and laboratory assessments. Individual and joint association of trehalose and glutamate with DR were quantified by multiple conditional logistic regression models. The adjusted odds of DR averagely decreased by 86% [odds ratio (OR): 0.14; 95% confidence interval (CI): 0.06,0.33] with per interquartile range increase of trehalose. Comparing with the lowest quartile, adjusted OR (95% CI) were 0.20 (0.05,0.83), 0.14 (0.03,0.63) and 0.01 (<0.01,0.05) for participants in the 2nd, 3rd and 4th quartiles of trehalose, respectively. In addition, as compared to their counterparts, T2D patients with lower trehalose (<median) and higher glutamate (≥ median) had the highest odds of DR (OR: 36.81; 95% CI: 6.75, 200.61). Apparent super-multiplicative effect of trehalose and glutamate on DR was observed, whereas relative excess risk due to interaction (RERI) was not significant. The study suggests that trehalose is beneficial to inhibit the occurrence of DR and synergistically decreases the risk of DR with reduced glutamate. Our findings also provide new insights into the mechanisms of DR and further longitudinal studies are required to confirm these findings.

Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 143
Heike tom Dieck ◽  
Christiane Schön ◽  
Tanja Wagner ◽  
Helga Carola Pankoke ◽  
Monika Fluegel ◽  

The gut microbiota is a crucial modulator of health effects elicited by food components, with SCFA (short chain fatty acids), especially butyrate, acting as important mediators thereof. We therefore developed a nutritional synbiotic composition targeted at shifting microbiome composition and activity towards butyrate production. An intestinal screening model was applied to identify probiotic Bacillus strains plus various amino acids and peptides with suitable effects on microbial butyrate producers and levels. A pilot study was performed to test if the synbiotic formulation could improve fecal butyrate levels in healthy humans. A combination of Bacillus subtilis DSM (Number of German Collection of Microorganisms and Cell Cultures) 32315 plus L-alanyl-L-glutamine resulted in distinctly increased levels of butyrate and butyrate-producing taxa (Clostridium group XIVa, e.g., Faecalibacterium prausnitzii), both in vitro and in humans. Moreover, circulating lipid parameters (LDL-, and total cholesterol and LDL/HDL cholesterol ratio) were significantly decreased and further metabolic effects such as glucose-modulation were observed. Fasting levels of PYY (Peptide YY) and GLP-1 (Glucagon-like Peptide 1) were significantly reduced. In conclusion, our study indicates that this synbiotic composition may provide an effective and safe tool for stimulation of intestinal butyrate production with effects on e.g., lipid and glucose homeostasis. Further investigations in larger cohorts are warranted to confirm and expand these findings.

2021 ◽  
Lu Liu ◽  
He Chen ◽  
Cheng Sun ◽  
Jianyun Zhang ◽  
Juncheng Wang ◽  

Genomic-scale somatic copy number alterations in healthy humans are difficult to investigate because of low occurrence rates and the structural variations’ stochastic natures. Using a Tn5-transposase-assisted single-cell whole-genome sequencing method, we sequenced over 20,000 single lymphocytes from 16 individuals. Then, with the scale increased to a few thousand single cells per individual, we found that about 7.5% of the cells had large-size copy number alterations. Trisomy 21 was the most prevalent aneuploid event among all autosomal copy number alterations, whereas monosomy X occurred most frequently in over-30-yr-old females. In the monosomy X single cells from individuals with phased genomes and identified X-inactivation ratios in bulk, the inactive X Chromosomes were lost more often than the active ones.

2021 ◽  
Bryan A Killinger ◽  
Patrik Brundin ◽  
Jeffery H Kordower ◽  
Gabriela Mercado ◽  
Solji G Choi ◽  

Synucleinopathies including Parkinsons disease and dementia with Lewy bodies are neurodegenerative diseases characterized by the intracellular accumulation of the protein alpha-synuclein called Lewy pathology. Alpha-synuclein within Lewy pathology is aggregated into protease resistant filamentous structures and is predominantly phosphorylated at serine 129 (PSER129). Lewy pathology has been hypothesized to spread throughout the nervous system as the disease progresses. Cross-sectional studies have shown the olfactory bulb and olfactory tract consistently bare LP for common synucleinopathies, making these structures likely starting points for the spreading process, and thus disease. Here we examined the distribution of PSER129 in non-diseased brain. To do this we used a sensitive tyramide signal amplification (TSA) technique to detect low abundance endogenous PSER129 under ideal antibody binding conditions. In wild-type non-diseased mice, PSER129 was detected in the olfactory bulb and several brain regions of the olfactory cortex across the neuroaxis (i.e., olfactory bulb to brain stem). PSER129 was particularly apparent in the mitral cell layer and the outer plexiform layer of the olfactory bulb where it was observed as cytosolic/nuclear puncta or fibers, respectively. PSER129 immunoreactivity in the healthy olfactory bulb was abolished by pretreatment of the tissue with proteinase K, pre-absorption of the primary antibody against the purified PSER129 peptide fragment, or the omission of the PSER129 antibody. Furthermore, PSER129 immunoreactivity was not observed in any brain region of alpha-synuclein knockout mice. Dual labeling for the PSER129 and the mitral cell marker TBX21 showed that PSER129 positive structures of the healthy OB were found in mitral cells. We found evidence of the same PSER129 positive structures in the olfactory bulb of non-diseased rats, non-human primates, healthy humans, but not individuals diagnosed with PD. Results suggest biological pathways responsible for alpha-synuclein phosphorylation are constitutively active in OB mitral cells and alpha-synuclein in these cells may be predisposed to pathological aggregation. Pathological seeds originating in mitral cells may act as a source for alpha-synuclein spread competent assemblies that spreads throughout the brain via fibers of the olfactory tract. Future studies should investigate the normal function of alpha-synuclein in the mitral cells of the olfactory bulb, which may give insight into synucleinopathy disease origins.

Raffaele Dubbioso ◽  
Giovanni Pellegrino ◽  
Federico Ranieri ◽  
Giovanni Di Pino ◽  
Fioravante Capone ◽  

Preclinical studies have demonstrated that Brain-Derived Neurotrophic Factor (BDNF) plays a crucial role in the homeostatic regulation of cortical excitability and excitation/inhibition balance. Using transcranial magnetic stimulation (TMS) techniques we investigated whether BDNF polymorphism could influence cortical excitability of the left and right primary motor cortex in healthy humans. Twenty-nine participants were recruited and genotyped for the presence of the BDNF Val66Met polymorphism, namely homozygous for the valine allele (Val/Val), heterozygotes (Val/Met), and homozygous for the methionine allele (Met/Met). Blinded to the latter, we evaluated inhibitory and facilitatory circuits of the left (LH) and right motor cortex (RH) by measuring resting (RMT) and active motor threshold (AMT), short interval intracortical inhibition (SICI) and intracortical facilitation (ICF). For each neurophysiological metric we also considered the inter-hemispheric balance expressed by the Laterality Index (LI). Val/Val participants (n= 21) exhibited an overall higher excitability of the LH compared to the RH, as probed by lower motor thresholds, lower SICI and higher ICF. Val/Val participants displayed positive LI, especially for AMT and ICF (all p< 0.05), indicating higher LH excitability and more pronounced inter-hemispheric excitability imbalance as compared to Met carriers. Our preliminary results suggest that BDNF Val66Met polymorphism might influence interhemispheric balance of motor cortex excitability.

2021 ◽  
Vol 3 (12) ◽  
Priyanka Bapat ◽  
Clarissa Nobile

A normal resident of healthy humans and warm-blooded animals, C. albicans is a commensal fungus that is also among the most common opportunistic pathogens of humans. C. albicans forms unique morphological structures called chlamydospores, which are large, spherical, thick-walled structures formed at the ends of hyphae that have unknown biological function. My goal is to discover the regulatory network controlling chlamydospore formation in C. albicans. By determining this network, we can gain insight into the biological roles of chlamydospores in the C. albicans lifestyle, better understand C. albicans morphological transitions, and determine the selective advantage (if any) provided by chlamydospores to this pathogenic fungus. To determine this regulatory network, I have screened a library of 211 C. albicans transcription factor (TF) homozygous deletion mutants to assay for their abilities to form chlamydospores under standard chlamydospore-inducing growth conditions. I have identified seven TF mutants that fail to produce any chlamydospores andthree TF mutants that produce high levels of chlamydospores relative to WT. To characterize the transcriptional changes occurring during chlamydospore formation, I have performed RNA sequencing (RNA-seq) on these identified regulator mutants to uncover the differentially regulated target genes of each chlamydospore regulator. I will use genome-wide chromatin immunoprecipitation followed by sequencing (ChIP-seq) on epitope-tagged versions of these regulators to determine which genes are directly under the control of each TF. RNA-seq coupled with ChIP-seq will allow me to determine the regulatory network controlling chlamydospore formation in C. albicans.

Jennifer Spohrs ◽  
Martin Ulrich ◽  
Georg Grön ◽  
Paul L. Plener ◽  
Birgit Abler

AbstractGold standard treatments for anxiety- and trauma-related disorders focus on exposure therapy promoting extinction learning and extinction retention. However, its efficacy is limited. Preclinical and particularly animal research has been able to demonstrate that homozygosity for the fatty acid amide hydrolase (FAAH) C385A allele, similar to FAAH inhibition, is associated with elevated concentrations of anandamide (AEA) and facilitates extinction learning and extinction recall. However, in humans, the underlying neurobiological processes are less well understood, and further knowledge might enhance the development of more effective therapies. In this functional magnetic resonance imaging (fMRI) study, a fear conditioning, fear extinction and extinction recall paradigm was conducted with 55 healthy male adults. They were genotyped for the FAAH single-nucleotide polymorphism (SNP) rs324420 to investigate differences related to extinction recall in neural activation and State–Trait Anxiety Inventory (STAI) ratings between AC heterozygotes and CC homozygotes (FAAH C385A SNP). Differential brain activation upon an unextinguished relative to an extinguished stimulus, was greater in AC heterozygotes as compared to CC homozygotes in core neural structures previously related to extinction recall, such as the medial superior frontal gyrus, the dorsal anterior cingulate and the anterior and middle insular cortex. Furthermore, AC heterozygotes displayed higher AEA levels and lower STAI-state ratings. Our data can be interpreted in line with previous suggestions of more successful extinction recall in A-allele carriers with elevated AEA levels. Data corroborate the hypothesis that the endocannabinoid system, particularly AEA, plays a modulatory role in the extinction of aversive memory.

Sign in / Sign up

Export Citation Format

Share Document