scholarly journals Dilation equations and Markov operators

2005 ◽  
Vol 309 (1) ◽  
pp. 307-312 ◽  
Author(s):  
Janusz Morawiec
Author(s):  
Carlo Pandiscia

In this work, we propose a method to investigate the factorization property of a adjontable Markov operator between two algebraic probability spaces without using the dilation theory. Assuming the existence of an anti-unitary operator on Hilbert space related to Stinespring representations of our Markov operator, which satisfy some particular modular relations, we prove that it admits a factorization. The method is tested on the two typologies of maps which we know admits a factorization, the Markov operators between commutative probability spaces and adjontable homomorphism. Subsequently, we apply these methods to particular adjontable Markov operator between matrix algebra which fixes the diagonal.


Filomat ◽  
2018 ◽  
Vol 32 (15) ◽  
pp. 5453-5457
Author(s):  
Hūlya Duru ◽  
Serkan Ilter

Let A and B be f -algebras with unit elements eA and eB respectively. A positive operator T from A to B satisfying T(eA) = eB is called a Markov operator. In this definition we replace unit elements with weak order units and, in this case, call T to be a weak Markov operator. In this paper, we characterize extreme points of the weak Markov operators.


1995 ◽  
Vol 89 (1-3) ◽  
pp. 77-134 ◽  
Author(s):  
Vadim Kaimanovich

1996 ◽  
pp. 69-72
Author(s):  
T. Cooklev ◽  
G. Berbecel ◽  
A.N. Venetsanopoulos
Keyword(s):  

2017 ◽  
Vol 38 (8) ◽  
pp. 3012-3041 ◽  
Author(s):  
MORITZ GERLACH ◽  
JOCHEN GLÜCK

If $(T_{t})$ is a semigroup of Markov operators on an $L^{1}$-space that admits a non-trivial lower bound, then a well-known theorem of Lasota and Yorke asserts that the semigroup is strongly convergent as $t\rightarrow \infty$. In this article we generalize and improve this result in several respects. First, we give a new and very simple proof for the fact that the same conclusion also holds if the semigroup is merely assumed to be bounded instead of Markov. As a main result, we then prove a version of this theorem for semigroups which only admit certain individual lower bounds. Moreover, we generalize a theorem of Ding on semigroups of Frobenius–Perron operators. We also demonstrate how our results can be adapted to the setting of general Banach lattices and we give some counterexamples to show optimality of our results. Our methods combine some rather concrete estimates and approximation arguments with abstract functional analytical tools. One of these tools is a theorem which relates the convergence of a time-continuous operator semigroup to the convergence of embedded discrete semigroups.


Sign in / Sign up

Export Citation Format

Share Document