scholarly journals A multiplication theorem for the Lerch zeta function and explicit representations of the Bernoulli and Euler polynomials

2006 ◽  
Vol 315 (2) ◽  
pp. 758-767 ◽  
Author(s):  
Ching-Hua Chang ◽  
Chung-Wei Ha
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Alejandro Urieles ◽  
William Ramírez ◽  
María José Ortega ◽  
Daniel Bedoya

Abstract The main purpose of this paper is to investigate the Fourier series representation of the generalized Apostol-type Frobenius–Euler polynomials, and using the above-mentioned series we find its integral representation. At the same time applying the Fourier series representation of the Apostol Frobenius–Genocchi and Apostol Genocchi polynomials, we obtain its integral representation. Furthermore, using the Hurwitz–Lerch zeta function we introduce the formula in rational arguments of the generalized Apostol-type Frobenius–Euler polynomials in terms of the Hurwitz zeta function. Finally, we show the representation of rational arguments of the Apostol Frobenius Euler polynomials and the Apostol Frobenius–Genocchi polynomials.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
S. Gaboury ◽  
A. Bayad

By making use of some explicit relationships between the Apostol-Bernoulli, Apostol-Euler, Apostol-Genocchi, and Apostol-Frobenius-Euler polynomials of higher order and the generalized Hurwitz-Lerch zeta function as well as a new expansion formula for the generalized Hurwitz-Lerch zeta function obtained recently by Gaboury and Bayad , in this paper we present some series representations for these polynomials at rational arguments. These results provide extensions of those obtained by Apostol (1951) and by Srivastava (2000).


2009 ◽  
Vol 3 (2) ◽  
pp. 336-346 ◽  
Author(s):  
Qiu-Ming Luo

We give some explicit relationships between the Apostol-Euler polynomials and generalized Hurwitz-Lerch Zeta function and obtain some series representations of the Apostol-Euler polynomials of higher order in terms of the generalized Hurwitz-Lerch Zeta function. Several interesting special cases are also shown.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Xiao-Yuan Wang ◽  
Lei Shi ◽  
Zhi-Ren Wang

The aim of the present paper is to investigate several third-order differential subordinations, differential superordination properties, and sandwich-type theorems of an integral operator Ws,bf(z) involving the Hurwitz–Lerch Zeta function. We make some applications of the operator Ws,bf(z) for meromorphic functions.


2011 ◽  
Vol 62 (1) ◽  
pp. 516-522 ◽  
Author(s):  
H.M. Srivastava ◽  
Dragana Jankov ◽  
Tibor K. Pogány ◽  
R.K. Saxena

Author(s):  
Gauhar Rahman ◽  
KS Nisar ◽  
Shahid Mubeen

In this paper, we define a (p,v)-extension of Hurwitz-Lerch Zeta function by considering an extension of beta function defined by Parmar et al. [J. Classical Anal. 11 (2017) 81–106]. We obtain its basic properties which include integral representations, Mellin transformation, derivative formulas and certain generating relations. Also, we establish the special cases of the main results.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1431
Author(s):  
Junesang Choi ◽  
Recep Şahin ◽  
Oğuz Yağcı ◽  
Dojin Kim

A number of generalized Hurwitz–Lerch zeta functions have been presented and investigated. In this study, by choosing a known extended Hurwitz–Lerch zeta function of two variables, which has been very recently presented, in a systematic way, we propose to establish certain formulas and representations for this extended Hurwitz–Lerch zeta function such as integral representations, generating functions, derivative formulas and recurrence relations. We also point out that the results presented here can be reduced to yield corresponding results for several less generalized Hurwitz–Lerch zeta functions than the extended Hurwitz–Lerch zeta function considered here. For further investigation, among possibly various more generalized Hurwitz–Lerch zeta functions than the one considered here, two more generalized settings are provided.


Sign in / Sign up

Export Citation Format

Share Document