scholarly journals Ground state solutions for quasilinear Schrödinger systems

2012 ◽  
Vol 389 (1) ◽  
pp. 322-339 ◽  
Author(s):  
Yuxia Guo ◽  
Zhongwei Tang
2015 ◽  
Vol 15 (1) ◽  
pp. 1-22 ◽  
Author(s):  
Yohei Sato ◽  
Zhi-Qiang Wang

AbstractIn this paper we study the ground state solutions for a nonlinear elliptic system of three equations which comes from models in Bose-Einstein condensates. Comparing with existing works in the literature which have been on purely attractive or purely repulsive cases, our investigation focuses on the effect of mixed interaction of attractive and repulsive couplings. We establish the existence of least energy positive solutions and study asymptotic profile of the ground state solutions, giving indication of co-existence of synchronization and segregation. In particular we show symmetry breaking for the ground state solutions.


2019 ◽  
Vol 150 (4) ◽  
pp. 1737-1768 ◽  
Author(s):  
Djairo G. de Figueiredo ◽  
João Marcos do Ó ◽  
Jianjun Zhang

AbstractThe aim of this paper is to study Hamiltonian elliptic system of the form 0.1$$\left\{ {\matrix{ {-\Delta u = g(v)} & {{\rm in}\;\Omega,} \cr {-\Delta v = f(u)} & {{\rm in}\;\Omega,} \cr {u = 0,v = 0} & {{\rm on}\;\partial \Omega,} \cr } } \right.$$ where Ω ⊂ ℝ2 is a bounded domain. In the second place, we present existence results for the following stationary Schrödinger systems defined in the whole plane 0.2$$\left\{ {\matrix{ {-\Delta u + u = g(v)\;\;\;{\rm in}\;{\open R}^2,} \cr {-\Delta v + v = f(u)\;\;\;{\rm in}\;{\open R}^2.} \cr } } \right.$$We assume that the nonlinearities f, g have critical growth in the sense of Trudinger–Moser. By using a suitable variational framework based on the generalized Nehari manifold method, we obtain the existence of ground state solutions of both systems (0.1) and (0.2).


Sign in / Sign up

Export Citation Format

Share Document