Least Energy Solutions for Nonlinear Schrödinger Systems with Mixed Attractive and Repulsive Couplings

2015 ◽  
Vol 15 (1) ◽  
pp. 1-22 ◽  
Author(s):  
Yohei Sato ◽  
Zhi-Qiang Wang

AbstractIn this paper we study the ground state solutions for a nonlinear elliptic system of three equations which comes from models in Bose-Einstein condensates. Comparing with existing works in the literature which have been on purely attractive or purely repulsive cases, our investigation focuses on the effect of mixed interaction of attractive and repulsive couplings. We establish the existence of least energy positive solutions and study asymptotic profile of the ground state solutions, giving indication of co-existence of synchronization and segregation. In particular we show symmetry breaking for the ground state solutions.

Author(s):  
Haidong Liu ◽  
Zhaoli Liu ◽  
Jinyong Chang

We prove that the Schrödinger systemwhere n = 1, 2, 3, N ≥ 2, λ1 = λ2 = … = λN = 1, βij = βji > 0 for i, j = 1, …, N, has a unique positive solution up to translation if the βij (i ≠ j) are comparatively large with respect to the βjj. The same conclusion holds if n = 1 and if the βij (i ≠ j) are comparatively small with respect to the βjj. Moreover, this solution is a ground state in the sense that it has the least energy among all non-zero solutions provided that the βij (i ≠ j) are comparatively large with respect to the βjj, and it has the least energy among all non-trivial solutions provided that n = 1 and the βij (i ≠ j) are comparatively small with respect to the βjj. In particular, these conclusions hold if βij = (i ≠ j) for some β and either β > max{β11, β22, …, βNN} or n = 1 and 0 < β < min{β11, β22, …, βNN}.


Author(s):  
Jing Chen ◽  
Yiqing Li

In this paper, we dedicate to studying the following semilinear Schrödinger system equation*-Δu+V1(x)u=Fu(x,u,v)amp;mboxin~RN,r-Δv+V2(x)v=Fv(x,u,v)amp;mboxin~RN,ru,v∈H1(RN),endequation* where the potential Vi are periodic in x,i=1,2, the nonlinearity F is allowed super-quadratic at some x ∈ R N and asymptotically quadratic at the other x ∈ R N . Under a local super-quadratic condition of F, an approximation argument and variational method are used to prove the existence of Nehari–Pankov type ground state solutions and the least energy solutions.


Author(s):  
Anna Lisa Amadori

In this paper, we consider the Hénon problem in the ball with Dirichlet boundary conditions. We study the asymptotic profile of radial solutions and then deduce the exact computation of their Morse index when the exponent [Formula: see text] is close to [Formula: see text]. Next we focus on the planar case and describe the asymptotic profile of some solutions which minimize the energy among functions which are invariant for reflection and rotations of a given angle [Formula: see text]. By considerations based on the Morse index we see that, depending on the values of [Formula: see text] and [Formula: see text], such least energy solutions can be radial, or nonradial and different one from another.


2019 ◽  
Vol 150 (4) ◽  
pp. 1737-1768 ◽  
Author(s):  
Djairo G. de Figueiredo ◽  
João Marcos do Ó ◽  
Jianjun Zhang

AbstractThe aim of this paper is to study Hamiltonian elliptic system of the form 0.1$$\left\{ {\matrix{ {-\Delta u = g(v)} & {{\rm in}\;\Omega,} \cr {-\Delta v = f(u)} & {{\rm in}\;\Omega,} \cr {u = 0,v = 0} & {{\rm on}\;\partial \Omega,} \cr } } \right.$$ where Ω ⊂ ℝ2 is a bounded domain. In the second place, we present existence results for the following stationary Schrödinger systems defined in the whole plane 0.2$$\left\{ {\matrix{ {-\Delta u + u = g(v)\;\;\;{\rm in}\;{\open R}^2,} \cr {-\Delta v + v = f(u)\;\;\;{\rm in}\;{\open R}^2.} \cr } } \right.$$We assume that the nonlinearities f, g have critical growth in the sense of Trudinger–Moser. By using a suitable variational framework based on the generalized Nehari manifold method, we obtain the existence of ground state solutions of both systems (0.1) and (0.2).


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Jing Chen ◽  
Zu Gao

Abstract We consider the following nonlinear fractional Schrödinger equation: $$ (-\triangle )^{s} u+V(x)u=g(u) \quad \text{in } \mathbb{R} ^{N}, $$ ( − △ ) s u + V ( x ) u = g ( u ) in  R N , where $s\in (0, 1)$ s ∈ ( 0 , 1 ) , $N>2s$ N > 2 s , $V(x)$ V ( x ) is differentiable, and $g\in C ^{1}(\mathbb{R} , \mathbb{R} )$ g ∈ C 1 ( R , R ) . By exploiting the minimization method with a constraint over Pohoz̆aev manifold, we obtain the existence of ground state solutions. With the help of Pohoz̆aev identity we also process the existence of the least energy solutions for the above equation. Our results improve the existing study on this nonlocal problem with Berestycki–Lions type nonlinearity to the one that does not need the oddness assumption.


Sign in / Sign up

Export Citation Format

Share Document