scholarly journals The t-coefficient method to partial theta function identities and Ramanujan’s 1ψ1 summation formula

2012 ◽  
Vol 396 (2) ◽  
pp. 844-854 ◽  
Author(s):  
X.R. Ma
2012 ◽  
Vol 6 (1) ◽  
pp. 114-125 ◽  
Author(s):  
Jun-Ming Zhu

We prove a general alternate circular summation formula of theta functions, which implies a great deal of theta-function identities. In particular, we recover several identities in Ramanujan's Notebook from this identity. We also obtain two formulaes for (q; q)2n?.


2020 ◽  
Vol 9 (7) ◽  
pp. 4929-4936
Author(s):  
D. Anu Radha ◽  
B. R. Srivatsa Kumar ◽  
S. Udupa

2020 ◽  
Vol 102 (1) ◽  
pp. 39-49
Author(s):  
ZHI-HONG SUN

Let $\mathbb{Z}$ and $\mathbb{Z}^{+}$ be the set of integers and the set of positive integers, respectively. For $a,b,c,d,n\in \mathbb{Z}^{+}$, let $t(a,b,c,d;n)$ be the number of representations of $n$ by $\frac{1}{2}ax(x+1)+\frac{1}{2}by(y+1)+\frac{1}{2}cz(z+1)+\frac{1}{2}dw(w+1)$ with $x,y,z,w\in \mathbb{Z}$. Using theta function identities we prove 13 transformation formulas for $t(a,b,c,d;n)$ and evaluate $t(2,3,3,8;n)$, $t(1,1,6,24;n)$ and $t(1,1,6,8;n)$.


2022 ◽  
Vol 101 ◽  
pp. 103470
Author(s):  
Ernest X.W. Xia ◽  
Ae Ja Yee ◽  
Xiang Zhao

2013 ◽  
Vol 162 (5) ◽  
pp. 825-861 ◽  
Author(s):  
Vladimir Petrov Kostov ◽  
Boris Shapiro

SIAM Review ◽  
1974 ◽  
Vol 16 (4) ◽  
pp. 553-555
Author(s):  
G. E. Andrews

Sign in / Sign up

Export Citation Format

Share Document