scholarly journals Kolmogorov’s factorization theorem for von Neumann algebras

2013 ◽  
Vol 401 (1) ◽  
pp. 289-292 ◽  
Author(s):  
Kohei Nakade ◽  
Tomoyoshi Ohwada ◽  
Kichi-Suke Saito
2019 ◽  
Vol 150 (5) ◽  
pp. 2656-2681
Author(s):  
Tobe Deprez

AbstractWe study class 𝒮 for locally compact groups. We characterize locally compact groups in this class as groups having an amenable action on a boundary that is small at infinity, generalizing a theorem of Ozawa. Using this characterization, we provide new examples of groups in class 𝒮 and prove a unique prime factorization theorem for group von Neumann algebras of products of locally compact groups in this class. We also prove that class 𝒮 is a measure equivalence invariant.


2019 ◽  
Author(s):  
Serban-Valentin Stratila ◽  
Laszlo Zsido

Author(s):  
Ivan Bardet ◽  
Ángela Capel ◽  
Cambyse Rouzé

AbstractIn this paper, we derive a new generalisation of the strong subadditivity of the entropy to the setting of general conditional expectations onto arbitrary finite-dimensional von Neumann algebras. This generalisation, referred to as approximate tensorization of the relative entropy, consists in a lower bound for the sum of relative entropies between a given density and its respective projections onto two intersecting von Neumann algebras in terms of the relative entropy between the same density and its projection onto an algebra in the intersection, up to multiplicative and additive constants. In particular, our inequality reduces to the so-called quasi-factorization of the entropy for commuting algebras, which is a key step in modern proofs of the logarithmic Sobolev inequality for classical lattice spin systems. We also provide estimates on the constants in terms of conditions of clustering of correlations in the setting of quantum lattice spin systems. Along the way, we show the equivalence between conditional expectations arising from Petz recovery maps and those of general Davies semigroups.


Sign in / Sign up

Export Citation Format

Share Document