scholarly journals Quasi-stationary distribution for the birth–death process with exit boundary

2015 ◽  
Vol 427 (1) ◽  
pp. 114-125 ◽  
Author(s):  
Wu-Jun Gao ◽  
Yong-Hua Mao
1992 ◽  
Vol 29 (4) ◽  
pp. 781-791 ◽  
Author(s):  
Masaaki Kijima

Let N(t) be an exponentially ergodic birth-death process on the state space {0, 1, 2, ···} governed by the parameters {λn, μn}, where µ0 = 0, such that λn = λ and μn = μ for all n ≧ N, N ≧ 1, with λ < μ. In this paper, we develop an algorithm to determine the decay parameter of such a specialized exponentially ergodic birth-death process, based on van Doorn's representation (1987) of eigenvalues of sign-symmetric tridiagonal matrices. The decay parameter is important since it is indicative of the speed of convergence to ergodicity. Some comparability results for the decay parameters are given, followed by the discussion for the decay parameter of a birth-death process governed by the parameters such that limn→∞λn = λ and limn→∞µn = μ. The algorithm is also shown to be a useful tool to determine the quasi-stationary distribution, i.e. the limiting distribution conditioned to stay in {1, 2, ···}, of such specialized birth-death processes.


1992 ◽  
Vol 29 (04) ◽  
pp. 781-791 ◽  
Author(s):  
Masaaki Kijima

Let N(t) be an exponentially ergodic birth-death process on the state space {0, 1, 2, ···} governed by the parameters {λn, μn }, where µ 0 = 0, such that λn = λ and μn = μ for all n ≧ N, N ≧ 1, with λ &lt; μ. In this paper, we develop an algorithm to determine the decay parameter of such a specialized exponentially ergodic birth-death process, based on van Doorn's representation (1987) of eigenvalues of sign-symmetric tridiagonal matrices. The decay parameter is important since it is indicative of the speed of convergence to ergodicity. Some comparability results for the decay parameters are given, followed by the discussion for the decay parameter of a birth-death process governed by the parameters such that lim n→∞ λn = λ and lim n→∞ µn = μ. The algorithm is also shown to be a useful tool to determine the quasi-stationary distribution, i.e. the limiting distribution conditioned to stay in {1, 2, ···}, of such specialized birth-death processes.


2006 ◽  
Vol 2006 ◽  
pp. 1-15 ◽  
Author(s):  
Pauline Coolen-Schrijner ◽  
Erik A. van Doorn

The Karlin-McGregor representation for the transition probabilities of a birth-death process with an absorbing bottom state involves a sequence of orthogonal polynomials and the corresponding measure. This representation can be generalized to a setting in which a transition to the absorbing state (killing) is possible from any state rather than just one state. The purpose of this paper is to investigate to what extent properties of birth-death processes, in particular with regard to the existence of quasi-stationary distributions, remain valid in the generalized setting. It turns out that the elegant structure of the theory of quasi-stationarity for birth-death processes remains largely intact as long as killing is possible from only finitely many states. In particular, the existence of a quasi-stationary distribution is ensured in this case if absorption is certain and the state probabilities tend to zero exponentially fast.


1986 ◽  
Vol 23 (04) ◽  
pp. 1013-1018
Author(s):  
B. G. Quinn ◽  
H. L. MacGillivray

Sufficient conditions are presented for the limiting normality of sequences of discrete random variables possessing unimodal distributions. The conditions are applied to obtain normal approximations directly for the hypergeometric distribution and the stationary distribution of a special birth-death process.


Author(s):  
Phil Diamond

AbstractCompetition between a finite number of searching insect parasites is modelled by differential equations and birth-death processes. In the one species case of intraspecific competition, the deterministic equilibrium is globally stable and, for large populations, approximates the mean of the stationary distribution of the process. For two species, both inter- and intraspecific competition occurs and the deterministic equilibrium is globally stable. When the birth-death process is reversible, it is shown that the mean of the stationary distribution is approximated by the equilibrium. Confluent hypergeometric functions of two variables are important to the theory.


1995 ◽  
Vol 32 (01) ◽  
pp. 25-38
Author(s):  
Servet Martínez ◽  
Maria Eulália Vares

We show that if the limiting conditional distribution for an absorbed birth–death chain exists, then the chain conditioned to non-absorption converges to a Markov chain with transition probabilities given by the matrix associated with the minimal quasi-stationary distribution.


1986 ◽  
Vol 23 (04) ◽  
pp. 1013-1018 ◽  
Author(s):  
B. G. Quinn ◽  
H. L. MacGillivray

Sufficient conditions are presented for the limiting normality of sequences of discrete random variables possessing unimodal distributions. The conditions are applied to obtain normal approximations directly for the hypergeometric distribution and the stationary distribution of a special birth-death process.


2003 ◽  
Vol 40 (3) ◽  
pp. 821-825 ◽  
Author(s):  
Damian Clancy ◽  
Philip K. Pollett

For Markov processes on the positive integers with the origin as an absorbing state, Ferrari, Kesten, Martínez and Picco studied the existence of quasi-stationary and limiting conditional distributions by characterizing quasi-stationary distributions as fixed points of a transformation Φ on the space of probability distributions on {1, 2, …}. In the case of a birth–death process, the components of Φ(ν) can be written down explicitly for any given distribution ν. Using this explicit representation, we will show that Φ preserves likelihood ratio ordering between distributions. A conjecture of Kryscio and Lefèvre concerning the quasi-stationary distribution of the SIS logistic epidemic follows as a corollary.


1987 ◽  
Vol 24 (04) ◽  
pp. 965-977 ◽  
Author(s):  
Ilze Ziedins

We discuss the quasi-stationary distribution obtained when a simple birth and death process is conditioned on never exceeding K. An application of this model to one-dimensional circuit-switched communication networks is described, and some special cases examined.


Sign in / Sign up

Export Citation Format

Share Document