exit boundary
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 4)

H-INDEX

14
(FIVE YEARS 1)

2020 ◽  
Vol 22 (6) ◽  
pp. 1485-1505
Author(s):  
Payam Sarkhosh ◽  
Amgad Salama ◽  
Yee-Chung Jin

Abstract For hydraulic routing through coarse rockfill dams, there is still debate on whether the inertia terms might be neglected as a result of the drag force generated by the rock materials. In this study, a one-dimensional unsteady model for flow-through rockfill dams is built. For this purpose, inertia terms of Saint–Venant equations are disregarded. A semi-implicit scheme adopted for linearizing the nonlinear friction term within the time integration satisfies the Courant–Friedrich–Lewy stability criterion. The most challenging issue in the modeling of flows through rockfill dams is the appropriate definition of boundary conditions at the dam's exit zone. In addition to the analysis of different exit boundary conditions proposed in the literature, a Neumann-type boundary condition suitable for the non-inertia wave equation is also employed to estimate the exit boundary condition. This procedure is basically in appreciation of the nonlinear behavior of the water surface closer to the exit boundary. Due to the existence of the sloping edges in the trapezoidal-shaped dam, an effective length is considered for the solution domain. Finally, the model is compared with observed data and a dynamic wave model. A very good match is observed, which builds confidence in the presented modeling approach.


2019 ◽  
Vol 876 ◽  
pp. 288-325 ◽  
Author(s):  
Christophe Bogey ◽  
Roberto Sabatini

The influence of the nozzle-exit boundary-layer profile on high-subsonic jets is investigated by performing compressible large-eddy simulations (LES) for three isothermal jets at a Mach number of 0.9 and a diameter-based Reynolds number of $5\times 10^{4}$, and by conducting linear stability analyses from the mean-flow fields. At the exit section of a pipe nozzle, the jets exhibit boundary layers of momentum thickness of approximately 2.8 % of the nozzle radius and a peak value of turbulence intensity of 6 %. The boundary-layer shape factors, however, vary and are equal to 2.29, 1.96 and 1.71. The LES flow and sound fields differ significantly between the first jet with a laminar mean exit velocity profile and the two others with transitional profiles. They are close to each other in these two cases, suggesting that similar results would also be obtained for a jet with a turbulent profile. For the two jets with non-laminar profiles, the instability waves in the near-nozzle region emerge at higher frequencies, the mixing layers spread more slowly and contain weaker low-frequency velocity fluctuations and the noise levels in the acoustic field are lower by 2–3 dB compared to the laminar case. These trends can be explained by the linear stability analyses. For the laminar boundary-layer profile, the initial shear-layer instability waves are most strongly amplified at a momentum-thickness-based Strouhal number $St_{\unicode[STIX]{x1D703}}=0.018$, which is very similar to the value obtained downstream in the mixing-layer velocity profiles. For the transitional profiles, on the contrary, they predominantly grow at higher Strouhal numbers, around $St_{\unicode[STIX]{x1D703}}=0.026$ and 0.032, respectively. As a consequence, the instability waves rapidly vanish during the boundary-layer/shear-layer transition in the latter cases, but continue to grow over a large distance from the nozzle in the former case, leading to persistent large-scale coherent structures in the mixing layers for the jet with a laminar exit velocity profile.


Author(s):  
Danielle Mason ◽  
Sean Clees ◽  
Mark Frederick ◽  
Jacqueline O’Connor

Abstract Many industrial combustion systems, especially power generation gas turbines, use fuel-lean combustion to reduce NOx emissions. However, these systems are highly susceptible to combustion instability, the coupling between combustor acoustics and heat release rate oscillations of the flame. It has been shown in previous work by the authors that a precessing vortex core (PVC) can suppress shear layer receptivity to external perturbations, reducing the potential for thermoacoustic coupling. The goal of this study is to understand the effect of combustor exit boundary condition on the flow structure of a swirling jet to increase fundamental understanding of how combustor design impacts PVC dynamics. The swirling jet is generated with a radial-entry, variable-angle swirler, and a quartz cylinder is fixed on the dump plane for confinement. Combustor exit constriction plates of different diameters are used to determine the impact of exit boundary condition on the flow field. Particle image velocimetry (PIV) is used to capture the velocity field inside the combustor. Spectral proper orthogonal decomposition, a frequency-resolved eigenvalue decomposition that can identify energetic structures in the flow, is implemented to identify the PVC at each condition in both energy and frequency space. We find that exit boundary diameter affects both the structure of the flow and the dynamics of the PVC. Higher levels of constriction (smaller diameters) force the downstream stagnation point of the vortex breakdown bubble upstream, resulting in greater divergence of the swirling jet. Further, as the exit diameter decreases, the PVC becomes less energetic and less spatially defined. Despite these changes in the base flow and PVC coherence, the PVC frequency is not altered by the exit boundary constriction. These trends will help inform our understanding of the impact of boundary conditions on both static and dynamic flame stability.


2018 ◽  
Vol 851 ◽  
pp. 83-124 ◽  
Author(s):  
Guillaume A. Brès ◽  
Peter Jordan ◽  
Vincent Jaunet ◽  
Maxime Le Rallic ◽  
André V. G. Cavalieri ◽  
...  

To investigate the effects of the nozzle-exit conditions on jet flow and sound fields, large-eddy simulations of an isothermal Mach 0.9 jet issued from a convergent-straight nozzle are performed at a diameter-based Reynolds number of $1\times 10^{6}$. The simulations feature near-wall adaptive mesh refinement, synthetic turbulence and wall modelling inside the nozzle. This leads to fully turbulent nozzle-exit boundary layers and results in significant improvements for the flow field and sound predictions compared with those obtained from the typical approach based on laminar flow in the nozzle. The far-field pressure spectra for the turbulent jet match companion experimental measurements, which use a boundary-layer trip to ensure a turbulent nozzle-exit boundary layer to within 0.5 dB for all relevant angles and frequencies. By contrast, the initially laminar jet results in greater high-frequency noise. For both initially laminar and turbulent jets, decomposition of the radiated noise into azimuthal Fourier modes is performed, and the results show similar azimuthal characteristics for the two jets. The axisymmetric mode is the dominant source of sound at the peak radiation angles and frequencies. The first three azimuthal modes recover more than 97 % of the total acoustic energy at these angles and more than 65 % (i.e. error less than 2 dB) for all angles. For the main azimuthal modes, linear stability analysis of the near-nozzle mean-velocity profiles is conducted in both jets. The analysis suggests that the differences in radiated noise between the initially laminar and turbulent jets are related to the differences in growth rate of the Kelvin–Helmholtz mode in the near-nozzle region.


Author(s):  
Taku Nonomura ◽  
Akira Oyama ◽  
Kozo Fujii ◽  
Koichi Morihira ◽  
Gabriel Pichon ◽  
...  

AIAA Journal ◽  
2016 ◽  
Vol 54 (4) ◽  
pp. 1299-1312 ◽  
Author(s):  
Christophe Bogey ◽  
Olivier Marsden

AIAA Journal ◽  
2015 ◽  
Vol 53 (7) ◽  
pp. 2027-2039 ◽  
Author(s):  
Rachelle L. Speth ◽  
Datta V. Gaitonde

Sign in / Sign up

Export Citation Format

Share Document