scholarly journals Conditions for the algebraic independence of certain series involving continued fractions and generated by linear recurrences

2009 ◽  
Vol 129 (12) ◽  
pp. 3081-3093
Author(s):  
Taka-aki Tanaka
1993 ◽  
Vol 61 (203) ◽  
pp. 351-351 ◽  
Author(s):  
H. W. Lenstra ◽  
J. O. Shallit

2014 ◽  
Vol 64 (2) ◽  
Author(s):  
Hacène Belbachir ◽  
Takao Komatsu ◽  
László Szalay

AbstractOur main purpose is to describe the recurrence relation associated to the sum of diagonal elements laying along a finite ray crossing Pascal’s triangle. We precise the generating function of the sequence of described sums. We also answer a question of Horadam posed in his paper [Chebyshev and Pell connections, Fibonacci Quart. 43 (2005), 108–121]. Further, using Morgan-Voyce sequence, we establish the nice identity $F_{n + 1} - iF_n = i^n \sum\limits_{k = 0}^n {(_{2k}^{n + k} )( - 2 - i)^k } $ of Fibonacci numbers, where i is the imaginary unit. Finally, connections to continued fractions, bivariate polynomials and finite differences are given.


2019 ◽  
Vol 6 (2) ◽  
pp. 90-94
Author(s):  
Hernandez Piloto Daniel Humberto

In this work a class of functions is studied, which are built with the help of significant bits sequences on the ring ℤ2n. This class is built with use of a function ψ: ℤ2n → ℤ2. In public literature there are works in which ψ is a linear function. Here we will use a non-linear ψ function for this set. It is known that the period of a polynomial F in the ring ℤ2n is equal to T(mod 2)2α, where α∈ , n01- . The polynomials for which it is true that T(F) = T(F mod 2), in other words α = 0, are called marked polynomials. For our class we are going to use a polynomial with a maximum period as the characteristic polyomial. In the present work we show the bounds of the given class: non-linearity, the weight of the functions, the Hamming distance between functions. The Hamming distance between these functions and functions of other known classes is also given.


Sign in / Sign up

Export Citation Format

Share Document