continued fractions
Recently Published Documents


TOTAL DOCUMENTS

2290
(FIVE YEARS 229)

H-INDEX

42
(FIVE YEARS 4)

2022 ◽  
Vol 186 ◽  
pp. 105556
Author(s):  
Douglas Bowman ◽  
Herman D. Schaumburg
Keyword(s):  

Mathematics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 127
Author(s):  
Qian Xiao ◽  
Chao Ma ◽  
Shuailing Wang

In this paper, we consider continued β-fractions with golden ratio base β. We show that if the continued β-fraction expansion of a non-negative real number is eventually periodic, then it is the root of a quadratic irreducible polynomial with the coefficients in Z[β] and we conjecture the converse is false, which is different from Lagrange’s theorem for the regular continued fractions. We prove that the set of Lévy constants of the points with eventually periodic continued β-fraction expansion is dense in [c, +∞), where c=12logβ+2−5β+12.


Author(s):  
MEIYING LÜ ◽  
ZHENLIANG ZHANG

Abstract For any x in $[0,1)$ , let $[a_1(x),a_2(x),a_3(x),\ldots ]$ be its continued fraction. Let $\psi :\mathbb {N}\to \mathbb {R}^+$ be such that $\psi (n) \to \infty $ as $n\to \infty $ . For any positive integers s and t, we study the set $$ \begin{align*}E(\psi)=\{(x,y)\in [0,1)^2: \max\{a_{sn}(x), a_{tn}(y)\}\ge \psi(n) \ {\text{for all sufficiently large}}\ n\in \mathbb{N}\} \end{align*} $$ and determine its Hausdorff dimension.


2021 ◽  
Vol 315 (1) ◽  
pp. 1-25
Author(s):  
Yann Bugeaud ◽  
Dong Han Kim ◽  
Seul Bee Lee
Keyword(s):  

2021 ◽  
Vol 13 (3) ◽  
pp. 642-650
Author(s):  
T.M. Antonova

The paper deals with the problem of convergence of the branched continued fractions with two branches of branching which are used to approximate the ratios of Horn's hypergeometric function $H_3(a,b;c;{\bf z})$. The case of real parameters $c\geq a\geq 0,$ $c\geq b\geq 0,$ $c\neq 0,$ and complex variable ${\bf z}=(z_1,z_2)$ is considered. First, it is proved the convergence of the branched continued fraction for ${\bf z}\in G_{\bf h}$, where $G_{\bf h}$ is two-dimensional disk. Using this result, sufficient conditions for the uniform convergence of the above mentioned branched continued fraction on every compact subset of the domain $\displaystyle H=\bigcup_{\varphi\in(-\pi/2,\pi/2)}G_\varphi,$ where \[\begin{split} G_{\varphi}=\big\{{\bf z}\in\mathbb{C}^{2}:&\;{\rm Re}(z_1e^{-i\varphi})<\lambda_1 \cos\varphi,\; |{\rm Re}(z_2e^{-i\varphi})|<\lambda_2 \cos\varphi, \\ &\;|z_k|+{\rm Re}(z_ke^{-2i\varphi})<\nu_k\cos^2\varphi,\;k=1,2;\; \\ &\; |z_1z_2|-{\rm Re}(z_1z_2e^{-2\varphi})<\nu_3\cos^{2}\varphi\big\}, \end{split}\] are established.


2021 ◽  
pp. 265-294
Author(s):  
Satyabrota Kundu ◽  
Sypriyo Mazumder
Keyword(s):  

2021 ◽  
Vol 13 (3) ◽  
pp. 608-618
Author(s):  
T. Komatsu

It has been known that the Hosoya index of caterpillar graph can be calculated as the numerator of the simple continued fraction. Recently in [MATCH Commun. Math. Comput. Chem. 2020, 84 (2), 399-428], the author introduces a more general graph called caterpillar-bond graph and shows that its Hosoya index can be calculated as the numerator of the general continued fraction. In this paper, we show how the Hosoya index of the graph with non-uniform ring structure can be calculated from the negative continued fraction. We also give the relation between some radial graphs and multidimensional continued fractions in the sense of the Hosoya index.


2021 ◽  
Vol 13 (3) ◽  
pp. 619-630
Author(s):  
D.I. Bodnar ◽  
I.B. Bilanyk

Using the criterion of convergence of branched continued fractions of the special form with positive elements, effective sufficient criteria of convergence for these fractions are established. To study the parabolic regions of convergence, the element regions and value regions technique was used. In particular, half-planes are considered as value regions. A multidimensional analogue of Tron's twin convergence regions for branched continued fractions of the special form is established. The obtained results made it possible to establish the conditions for the convergence of the multidimensional $S$-fractions with independent variables.


2021 ◽  
Vol 13 (3) ◽  
pp. 592-607
Author(s):  
R.I. Dmytryshyn ◽  
S.V. Sharyn

The paper deals with the problem of approximation of functions of several variables by branched continued fractions. We study the correspondence between formal multiple power series and the so-called "multidimensional $S$-fraction with independent variables". As a result, the necessary and sufficient conditions for the expansion of the formal multiple power series into the corresponding multidimensional $S$-fraction with independent variables have been established. Several numerical experiments show the efficiency, power and feasibility of using the branched continued fractions in order to numerically approximate certain functions of several variables from their formal multiple power series.


Sign in / Sign up

Export Citation Format

Share Document