DistDLB: Improving cosmology SAMR simulations on distributed computing systems through hierarchical load balancing

2006 ◽  
Vol 66 (5) ◽  
pp. 716-731 ◽  
Author(s):  
Zhiling Lan ◽  
Valerie E. Taylor ◽  
Yawei Li
Author(s):  
Vidya S. Handur, Et. al.

Development of technology like Cloud Computing and its widespread usage has given rise to exponential increase in the volume of traffic. With this increase in huge traffic the resources in the network would either be insufficient to handle the traffic or the situation may cause some of the resources to be over utilized or underutilized. This condition leads to reduced performance of the system. To improve the performance of the system the traffic requires to be regulated such that all the resources are utilized conferring to their capacity which is known as load balancing. Load balancing has been one of the concerns in the distributed computing systems where the computing nodes do not have a global view of the network. There have been constant efforts to provide an efficient solution for load balancing through the approaches like game theory, fuzzy logic, heuristics and metaheuristics. Even though various solutions exist for balancing the load, the issue is challenging as there does not exist one best fit solution. The paper aims at the study of how Particle Swarm Optimization approach is used to achieve an optimal solution for load balancing in distributed computing system.


2021 ◽  
Vol 11 (22) ◽  
pp. 10807
Author(s):  
Fatma Mbarek ◽  
Volodymyr Mosorov

Many computer problems that arise from real-world circumstances are NP-hard, while, in the worst case, these problems are generally assumed to be intractable. Existing distributed computing systems are commonly used for a range of large-scale complex problems, adding advantages to many areas of research. Dynamic load balancing is feasible in distributed computing systems since it is a significant key to maintaining stability of heterogeneous distributed computing systems (HDCS). The challenge of load balancing is an objective function of optimization with exponential complexity of solutions. The problem of dynamic load balancing raises with the scale of the HDCS and it is hard to tackle effectively. The solution to this unsolvable issue is being explored under a particular algorithm paradigm. A new codification strategy, namely hybrid nearest-neighbor ant colony optimization (ACO-NN), which, based on the metaheuristic ant colony optimization (ACO) and an approximate nearest-neighbor (NN) approaches, has been developed to establish a dynamic load balancing algorithm for distributed systems. Several experiments have been conducted to explore the efficiency of this stochastic iterative load balancing algorithm; it is tested with task and nodes accessibility and proved to be effective with diverse performance metrics.


Sign in / Sign up

Export Citation Format

Share Document