scholarly journals Non-parametric Poisson regression from independent and weakly dependent observations by model selection

2019 ◽  
Vol 199 ◽  
pp. 249-270
Author(s):  
Martin Kroll
2020 ◽  
Vol 34 (04) ◽  
pp. 6803-6810
Author(s):  
Rui Zhang ◽  
Christian Walder ◽  
Marian-Andrei Rizoiu

The Hawkes process (HP) has been widely applied to modeling self-exciting events including neuron spikes, earthquakes and tweets. To avoid designing parametric triggering kernel and to be able to quantify the prediction confidence, the non-parametric Bayesian HP has been proposed. However, the inference of such models suffers from unscalability or slow convergence. In this paper, we aim to solve both problems. Specifically, first, we propose a new non-parametric Bayesian HP in which the triggering kernel is modeled as a squared sparse Gaussian process. Then, we propose a novel variational inference schema for model optimization. We employ the branching structure of the HP so that maximization of evidence lower bound (ELBO) is tractable by the expectation-maximization algorithm. We propose a tighter ELBO which improves the fitting performance. Further, we accelerate the novel variational inference schema to linear time complexity by leveraging the stationarity of the triggering kernel. Different from prior acceleration methods, ours enjoys higher efficiency. Finally, we exploit synthetic data and two large social media datasets to evaluate our method. We show that our approach outperforms state-of-the-art non-parametric frequentist and Bayesian methods. We validate the efficiency of our accelerated variational inference schema and practical utility of our tighter ELBO for model selection. We observe that the tighter ELBO exceeds the common one in model selection.


2012 ◽  
Vol 17 (3) ◽  
pp. 383-395 ◽  
Author(s):  
Janis Valeinis ◽  
Audris Locmelis

The aim of this paper is to analyze the Bickel–Rosenblatt test for simple hypothesis in case of weakly dependent data. Although the test has nice theoretical properties, it is not clear how to implement it in practice. Choosing different band-width sequences first we analyze percentage rejections of the test statistic under H0 by some empirical simulation analysis. This can serve as an approximate rule for choosing the bandwidth in case of simple hypothesis for practical implementation of the test. In the recent paper [12] a version of Neyman goodness-of-fit test was established for weakly dependent data in the case of simple hypotheses. In this paper we also aim to compare and discuss the applicability of these tests for both independent and dependent observations.


2005 ◽  
Vol 69 (1-3) ◽  
pp. 100-122 ◽  
Author(s):  
Kristiaan Pelckmans ◽  
Jos De Brabanter ◽  
Johan A.K. Suykens ◽  
Bart De Moor

Sign in / Sign up

Export Citation Format

Share Document