Three-dimensional free vibration analysis of isotropic rectangular plates using the B-spline Ritz method

2008 ◽  
Vol 317 (1-2) ◽  
pp. 329-353 ◽  
Author(s):  
H. Nagino ◽  
T. Mikami ◽  
T. Mizusawa
Author(s):  
Vahid Tajeddini ◽  
Abdolreza Ohadi ◽  
Mojtaba Sadighi

This paper describes a study of three-dimensional free vibration analysis of thick circular and annular functionally graded (FG) plates resting on Pasternak foundation. The formulation is based on the linear, small strain and exact elasticity theory. Plates with different boundary conditions are considered and the material properties of the FG plate are assumed to vary continuously through the thickness according to power law. The kinematic and the potential energy of the plate-foundation system are formulated and the polynomial-Ritz method is used to solve the eigenvalue problem. Convergence and comparison studies are done to demonstrate the correctness and accuracy of the present method. With respect to geometric parameters, elastic coefficients of foundation and different boundary conditions some new results are reported which maybe used as a benchmark solution for future researches.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Yi Li ◽  
Ming Lv ◽  
Shi-ying Wang ◽  
Hui-bin Qin ◽  
Jun-fan Fu

To reflect vibration more comprehensively and to satisfy the machining demand for high-order frequencies, we presented a three-dimensional free vibration analysis of gears with variable thickness using the Chebyshev–Ritz method based on three-dimensional elasticity theory. We derived the eigenvalue equations. We divided the gear model into three annular parts along the locations of the step variations, and the admissible function was a Ritz series that consisted of a Chebyshev polynomial multiplying boundary function. The convergence study demonstrated the high accuracy of the present method. We used a hammering method for a modal experiment to test two annular plates and one gear’s eigenfrequencies in a completely free condition. We also applied the finite element method to solve the eigenfrequencies. Through a comparative analysis of the frequencies obtained by these three methods, we found that the results achieved by the Chebyshev–Ritz method were close to those obtained from the experiment and finite element method. The relative errors of four sets of data were greater than 4%, and the errors of the other 48 sets were less than 4%. Thus, it was feasible to use the Chebyshev–Ritz method to solve the eigenfrequencies of gears with variable thickness.


Sign in / Sign up

Export Citation Format

Share Document