Free vibration analysis of delaminated beams using mixed finite element model

2009 ◽  
Vol 328 (4-5) ◽  
pp. 428-440 ◽  
Author(s):  
G.S. Ramtekkar
2020 ◽  
Vol 12 (06) ◽  
pp. 2050069
Author(s):  
Mohammad Amir ◽  
Mohammad Talha

An efficient finite element model based on three nodded element has been developed for the vibration analysis of sandwich arches with graded metallic cellular (GMC) core. The present formulation is based on the higher-order shear deformation theory and orthogonal curvilinear coordinate axes. The arch consists of two isotropic face sheets and a GMC core layer. The internal pores in the core layer follow the different types of distributions. The material properties of the GMC core layer of the sandwich arches vary in the thickness direction as a function in terms of porosity coefficient and mass density. Three types of porosity distributions have been considered to accomplish the vibration responses of sandwich arches. The present formulation is validated with limited results available in the literature. Few new results are computed and the effects of different influencing parameters such as porosity coefficient [Formula: see text], porosity distribution type, the thickness-to-length ratio [Formula: see text], boundary conditions and opening angle [Formula: see text] on the free vibration characteristics of sandwich arches with the GMC core are observed. The present finite element model gives better convergence and more accurate results than a conventional two nodded element-based finite element model.


2013 ◽  
Vol 13 (02) ◽  
pp. 1250056 ◽  
Author(s):  
ATİLLA ÖZÜTOK ◽  
EMRAH MADENCİ

In this study, a mixed-finite element method for free vibration analysis of cross-ply laminated composite beams is presented based on the "Euler–Bernoulli Beam Theory" and "Timoshenko Beam Theory". The Gâteaux differential approach is employed to construct the functionals of laminated beams using the variational method. By using these functionals in the mixed-type finite element method, two beam elements CLBT4 and FSDT8 are derived for the Euler–Bernoulli and Timoshenko beam theories, respectively. The CLBT4 element has four degrees of freedom (DOFs), containing the vertical displacement and bending moment as unknowns at the nodes, whereas the FSDT8 element has eight DOFs, containing the vertical displacement, bending moment, shear force and rotation as unknowns. A computer program is developed to execute the analyses for the present study. The numerical results of free vibration analyses obtained for different boundary conditions are presented and compared with results available in the literature, which indicates the reliability of the present approach.


2012 ◽  
Vol 246-247 ◽  
pp. 1278-1282 ◽  
Author(s):  
Hui Hui Chen ◽  
Cheng Jia

For the purpose of construction an effective element model, the US- FE-LSPIM TRI3 element formulation, which is based on the concept of unsymmetric finite element formulation, is established. Classical linear triangle shape functions and FE-LSPIM TRI3 element shape functions are used as test and trial functions respectively. Classical linear triangle shape functions fulfill the requirements of continuity in displacement field for test functions. The FE-LSPIM TRI3 element shape functions synthesize the individual strengths of meshfree and finite element methods so they are more proper for trial functions. The element is applied in free vibration analysis of two dimension solids. Typical benchmark problems are solved. The results show that this element is more accurate and capable of good performances under both regular and irregular meshes.


Sign in / Sign up

Export Citation Format

Share Document