beam theory
Recently Published Documents


TOTAL DOCUMENTS

2099
(FIVE YEARS 483)

H-INDEX

71
(FIVE YEARS 9)

Author(s):  
Ahmed E. Abouelregal ◽  
Kadry Zakaria ◽  
Magdy A. Sirwah ◽  
Hijaz Ahmad ◽  
Ali F. Rashid

This work aims to assess the response of viscoelastic Kelvin–Voigt microscale beams under initial stress. The microbeam is photostimulated by the light emitted by an intense picosecond pulsed laser. The photothermal elasticity model with dual-phase lags, the plasma wave equation and Euler–Bernoulli beam theory are utilized to construct the system equations governing the thermoelastic vibrations of microbeams. Using the Laplace transform technique, the problem is solved analytically and expressions are provided for the distributions of photothermal fields. Taking aluminum as a numerical example, the effect of the pulsed laser duration coefficient, viscoelasticity constants and initial stress on photothermal vibrations has been studied. In addition, a comparison has been made between different models of photo-thermoelasticity to validate the results of the current model. Photo-microdynamic systems might be monolithically integrated on aluminum microbeams using microsurface processing technology as a result of this research.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 562
Author(s):  
Ying Hao ◽  
Ming Gao ◽  
Jiajie Gong

The study of the bifurcation, random vibration, chaotic dynamics, and control of laminated composite beams are research hotspots. In this paper, the parametric random vibration of an axially moving laminated shape memory alloy (SMA) beam was investigated. In light of the Timoshenko beam theory and taking into consideration axial motion effects and axial forces, a random dynamic equation of laminated SMA beams was deduced. The Falk’s polynomial constitutive model of SMA was used to simulate the nonlinear random dynamic behavior of the laminated beam. Additionally, the numerical of the probability density function and power spectral density curves was obtained through the Monte Carlo simulation. The results indicated that the large amplitude vibration character of the beam can be caused by random perturbation on axial velocity.


Author(s):  
Weigang Fu ◽  
Bin Wang

Perforated plates are widely used in thin-walled engineering structures, for example, for lightweight designs of structures and access for installation. For the purpose of analysis, such perforated plates with two opposite free edges might be considered as a series of successive Timoshenko beams. A new semi-analytical model was developed in this study using the Timoshenko shear beam theory for the critical buckling load of perforated plates, with the characteristic equations derived. Results of the proposed modelling were compared with those obtained by FEM and show good agreement. The influence of the dividing number of the successive beams on the accuracy of the critical buckling load was studied with respect to various boundary conditions. And the effect of geometrical parameters, such as the aspect ratio, the thickness-to-width ratio and the cutout-to-width ratio were also investigated. The study shows that the proposed semi-analytical model can be used for buckling analysis of a perforated plate with opposite free edges with the capacity to consider the shear effect in thick plates.


Author(s):  
Oleksiy Kyrkach ◽  
Havin Valerij Havin ◽  
Borys Kyrkach

In this paper a mathematical model and computational tool are developed for the static analysis of multi-bearing spindle shafts with nonlinear elastic supports. Based on the Timoshenko beam theory a resolving system of equations is obtained that takes into account the nonlinear dependence of the bearing stiffness on the reaction forces acting upon them. A solution method is proposed and appropriate software is developed that implements the static analysis of multi-support spindle shafts with non-linearly elastic bearings in MATLAB environment. Key words: spindle, shaft, nonlinear elastic support, multi-bearing, nonlinear elastic stiffness, Timoshenko beam.


Sign in / Sign up

Export Citation Format

Share Document