scholarly journals Parameterized reduced order models from a single mesh using hyper-dual numbers

2016 ◽  
Vol 371 ◽  
pp. 370-392 ◽  
Author(s):  
M.R.W. Brake ◽  
J.A. Fike ◽  
S.D. Topping
Author(s):  
Matthew S. Bonney ◽  
Daniel C. Kammer ◽  
Matthew R. W. Brake

The uncertainty of a system is usually quantified with the use of sampling methods such as Monte-Carlo or Latin hypercube sampling. These sampling methods require many computations of the model and may include re-meshing. The re-solving and re-meshing of the model is a very large computational burden. One way to greatly reduce this computational burden is to use a parameterized reduced order model. This is a model that contains the sensitivities of the desired results with respect to changing parameters such as Young’s modulus. The typical method of computing these sensitivities is the use of finite difference technique that gives an approximation that is subject to truncation error and subtractive cancellation due to the precision of the computer. One way of eliminating this error is to use hyperdual numbers, which are able to generate exact sensitivities that are not subject to the precision of the computer. This paper uses the concept of hyper-dual numbers to parameterize a system that is composed of two substructures in the form of Craig-Bampton substructure representations, and combine them using component mode synthesis. The synthesis transformations using other techniques require the use of a nominal transformation while this approach allows for exact transformations when a perturbation is applied. This paper presents this technique for a planar motion frame and compares the use and accuracy of the approach against the true full system. This work lays the groundwork for performing component mode synthesis using hyper-dual numbers.


AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 1318-1325 ◽  
Author(s):  
Michael I. Friswell ◽  
Daniel J. Inman

Sign in / Sign up

Export Citation Format

Share Document