Volume 8: 27th Conference on Mechanical Vibration and Noise
Latest Publications


TOTAL DOCUMENTS

110
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791857182

Author(s):  
Anria Strydom ◽  
Werner Scholtz ◽  
Schalk Els

Magnetorheological (MR) dampers are controllable semi-active dampers capable of providing a range of continuous damping settings. MR dampers are often incorporated in suspension systems of vehicles where conflicting damping characteristics are required for favorable ride comfort and handling behavior. For control applications the damper controller determines the required damper current in order to track the desired damping force, often by using a suitable MR damper model. In order to utilise the fast switching time capability of MR dampers, a model that can be used to directly calculate damper current is desired. Unfortunately few such models exist and other methods, which often negatively affect the computational efficiency of the model, need to be used when implementing these models. In this paper a selection of MR damper models are developed and evaluated for both accuracy and computational efficiency while tracking a desired damping force. The Kwok model is identified as a suitable candidate for the intended suspension control application.


Author(s):  
Kelvin Peng ◽  
William Singhose

When crane payloads are lifted off the ground, the payload may unexpectedly swing sideways. This occurs when the hoist cables are at an angle relative to vertical and the payload is not directly beneath the hoist. Because the hoist point is far above the payload, it is difficult for crane operators to know if the hoist cable is perfectly vertical before they start to lift the payload. Some amount of horizontal motion of the payload will always occur at lift off. If an off-centered lift results in significant horizontal motion, then it creates a hazard for the human operators, the payload, and the surrounding environment. This paper develops dynamic models of off-centered lifts and presents experimental verification of the theoretical predictions. To mitigate the detrimental effects of off-centered lifts, autonomous-centering solutions are proposed.


Author(s):  
Charles Nutakor ◽  
R. Scott Semken ◽  
Janne E. Heikkinen ◽  
Jussi Sopanen ◽  
Aki Mikkola

A non-contact modal analysis method is implemented to estimate the structural damping ratios for four stacks of sheet-steel, each bound using a different method. The setup comprised the four subject stacks and, for comparison, two single homogeneous steel plates of the same length and width with thicknesses that approximated the layered stack heights. To carry out the modal analyses, each test item was hung to simulate a free-free boundary condition. A force and frequency adjustable impact hammer imparted transient vibration to each hanging test piece after which the local relative velocity for each one of an array of discrete target points across the entire length-to-width surface was measured using an optical transducer. Damping ratios were extracted from the frequency response curves using the half power bandwidth method. Comparing the results obtained for the layered sheet-steel stacks with those from the homogeneous steel plates showed that damping ratios and loss factors can be estimated using the proposed experimental technique. The consistent impacts and the elimination of test structure mass loading improves the accuracy of damping estimates. In comparison to the solid plates, the layered sheet-steel stacks were characterized by increased damping. The effect was most significant for the stack bound together by polymer rivets.


Author(s):  
Matthew S. Bonney ◽  
Daniel C. Kammer ◽  
Matthew R. W. Brake

The uncertainty of a system is usually quantified with the use of sampling methods such as Monte-Carlo or Latin hypercube sampling. These sampling methods require many computations of the model and may include re-meshing. The re-solving and re-meshing of the model is a very large computational burden. One way to greatly reduce this computational burden is to use a parameterized reduced order model. This is a model that contains the sensitivities of the desired results with respect to changing parameters such as Young’s modulus. The typical method of computing these sensitivities is the use of finite difference technique that gives an approximation that is subject to truncation error and subtractive cancellation due to the precision of the computer. One way of eliminating this error is to use hyperdual numbers, which are able to generate exact sensitivities that are not subject to the precision of the computer. This paper uses the concept of hyper-dual numbers to parameterize a system that is composed of two substructures in the form of Craig-Bampton substructure representations, and combine them using component mode synthesis. The synthesis transformations using other techniques require the use of a nominal transformation while this approach allows for exact transformations when a perturbation is applied. This paper presents this technique for a planar motion frame and compares the use and accuracy of the approach against the true full system. This work lays the groundwork for performing component mode synthesis using hyper-dual numbers.


Author(s):  
Cagkan Yildiz ◽  
Tamer M. Wasfy ◽  
Hatem M. Wasfy ◽  
Jeanne M. Peters

In order to accurately predict the fatigue life and wear life of a belt, the various stresses that the belt is subjected to and the belt slip over the pulleys must be accurately calculated. In this paper, the effect of material and geometric parameters on the steady-state stresses (including normal, tangential and axial stresses), average belt slip for a flat belt, and belt-drive energy efficiency is studied using a high-fidelity flexible multibody dynamics model of the belt-drive. The belt’s rubber matrix is modeled using three-dimensional brick elements and the belt’s reinforcements are modeled using one dimensional truss elements. Friction between the belt and the pulleys is modeled using an asperity-based Coulomb friction model. The pulleys are modeled as cylindrical rigid bodies. The equations of motion are integrated using a time-accurate explicit solution procedure. The material parameters studied are the belt-pulley friction coefficient and the belt axial stiffness and damping. The geometric parameters studied are the belt thickness and the pulleys’ centers distance.


Author(s):  
Mohammad A. Al-Shudeifat

Symmetric piecewise nonlinearities are employed here to design highly efficient nonlinear energy sink (NES). These symmetric piecewise nonlinearities are usually called in the literature as dead-zone nonlinearities. The proposed dead-zone NES includes symmetric clearance about its equilibrium position in which zero stiffness and linear viscous damping are incorporated. At the boundaries of the symmetric clearance, the NES is coupled to the linear structure by either linear or nonlinear stiffness components in addition to similar viscous damping to that in the clearance zone. By this flexible design of the dead-zone NES, we obtain a considerable enhancement in the NES efficiency at moderate and severe energy inputs. Moreover, the dead-zone NES is also found here through numerical simulations to be more robust for damping and stiffness variations than the linear absorber and some other types of NESs.


Author(s):  
Alessio Pierdicca ◽  
Francesco Clementi ◽  
Diletta Maracci ◽  
Daniela Isidori ◽  
Stefano Lenci

One of the most important issues in civil and in mechanical engineering is the detection of structural damages, which are defined as changes of material properties, of boundary conditions and of system connectivity, which adversely affect the system’s performances. The damage identification process generally requires establishing existence, localization, type and intensity of the damage. During its service life, a structure, besides his natural aging, can be subjected to earthquakes. These events may have a deep impact on building safety and a continuous monitoring of the structure health conditions, through Structural Health Monitoring (SHM) techniques, is necessary in many cases. Within this a background, the purpose of this work is to propose an integrated novel approach for the diagnosis of structures after a seismic event. The proposed monitoring system is based on recording the accelerations of the real structure during a seismic input, and the reintroduction of them into a numerical model, suitably tuned, in order to outline a possible post-earthquake scenario. This approach provides an estimation of the health of the building and of its residual life, and to detect and quantify the damage, some of the crucial aspects of SHM. Actually, we also get both online and self-diagnosis of the structural health. The technique is applied to a real structure, an industrial building liable of some seismic vulnerabilities. It it did not undergo an earthquake, so we have not recordered accelerations, and get them from a different numerical models subjected to the ground acceleration of a realistic earthquake.


Author(s):  
Nick Cramer ◽  
Sean Swei ◽  
Kenny Cheung ◽  
M. Teodorescu

The current emphasis on increasing aeronautical efficiency is leading the way to a new class of lighter more flexible airplane materials and structures, which unfortunately can result in aeroelastic instabilities. To effectively control the wings deformation and shape, appropriate modeling is necessary. Wings are often modeled as cantilever beams using finite element analysis. The drawback of this approach is that large aeroelastic models cannot be used for embedded controllers. Therefore, to effectively control wings shape, a simple, stable and fast equivalent predictive model that can capture the physical problem and could be used for in-flight control is required. The current paper proposes a Discrete Time Finite Element Transfer Matrix (DT-FETMM) model beam deformation and use it to design a regulator. The advantage of the proposed approach over existing methods is that the proposed controller could be designed to suppress a larger number of vibration modes within the fidelity of the selected time step. We will extend the discrete time transfer matrix method to finite element models and present the decentralized models and controllers for structural control.


Author(s):  
Nader Dolatabadi ◽  
Stephanos Theodossiades ◽  
Steve J. Rothberg

The impulsive behavior of piston plays a key role in the Noise, Vibration and Harshness (NVH) of internal combustion engines. There have been several studies on the identification and quantification of piston impacting action under various operation conditions. In the current study, the dynamics of piston secondary motion are briefly explored, since this is fundamental to understanding the aggressive oscillations, energy loss and noise generation. Concepts of controlling piston secondary motion (and thus, impacts) are investigated and a new passive control approach is presented based on the nonlinear energy absorption of the highly transient oscillations. The effectiveness of this new method on the improvement of piston impact behavior is discussed, using a preliminary optimization exercise (with respect to engine excitation/speed, damping and stiffness of the nonlinear oscillator) that leads to the conceptual design of a nonlinear energy absorber.


Author(s):  
Hammad Mazhar

This paper describes an open source parallel simulation framework capable of simulating large-scale granular and multi-body dynamics problems. This framework, called Chrono::Parallel, builds upon the modeling capabilities of Chrono::Engine, another open source simulation package, and leverages parallel data structures to enable scalable simulation of large problems. Chrono::Parallel is somewhat unique in that it was designed from the ground up to leverage parallel data structures and algorithms so that it scales across a wide range of computer architectures and yet has a rich modeling capability for simulating many different types of problems. The modeling capabilities of Chrono::Parallel will be demonstrated in the context of additive manufacturing and 3D printing by modeling the Selective Layer Sintering layering process and simulating large complex interlocking structures which require compression and folding to fit into a 3D printer’s build volume.


Sign in / Sign up

Export Citation Format

Share Document