Soft set based association rule mining

2016 ◽  
Vol 111 ◽  
pp. 268-282 ◽  
Author(s):  
Feng Feng ◽  
Junghoo Cho ◽  
Witold Pedrycz ◽  
Hamido Fujita ◽  
Tutut Herawan
2012 ◽  
Vol 3 (3) ◽  
pp. 64-77 ◽  
Author(s):  
Satya Ranjan Dash ◽  
Satchidananda Dehuri ◽  
Uma kant Sahoo

This paper is two folded. In first fold, the authors have illustrated the interplay among fuzzy, rough, and soft set theory and their way of handling vagueness. In second fold, the authors have studied their individual strengths to discover association rules. The performance of these three approaches in discovering comprehensible rules are presented.


2013 ◽  
Vol 3 (3) ◽  
pp. 37-50
Author(s):  
Satya Ranjan Dash ◽  
Satchidananda Dehuri ◽  
Uma kant Sahoo

In this paper, interactions among fuzzy, rough, and soft set theory has been studied. The authors have examined these theories as a problem solving tool in association rule mining problems of data mining and knowledge discovery in databases. Although fuzzy and rough set have been well studied areas and successfully applied in association rule mining problem, but soft set theory needs more attention from both theoretical and practical side. Therefore, to make some improvement in this direction, the authors studied soft set theory and its interaction with fuzzy and rough set. Alongside, the authors have taken a numerical example related to a societal problem for realizing the practical importance of these theories.


2012 ◽  
Vol 1 (4) ◽  
pp. 25-28
Author(s):  
M.Dhanabhakyam M.Dhanabhakyam ◽  
◽  
Dr.M.Punithavalli Dr.M.Punithavalli

2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Rizal Setya Perdana ◽  
Umi Laili Yuhana

Kualitas perangkat lunak merupakan salah satu penelitian pada bidangrekayasa perangkat lunak yang memiliki peranan yang cukup besar dalamterbangunnya sistem perangkat lunak yang berkualitas baik. Prediksi defectperangkat lunak yang disebabkan karena terdapat penyimpangan dari prosesspesifikasi atau sesuatu yang mungkin menyebabkan kegagalan dalam operasionaltelah lebih dari 30 tahun menjadi topik riset penelitian. Makalah ini akandifokuskan pada prediksi defect yang terjadi pada kode program (code defect).Metode penanganan permasalahan defect pada kode program akan memanfaatkanpola-pola kode perangkat lunak yang berpotensi menimbulkan defect pada data setNASA untuk memprediksi defect. Metode yang digunakan dalam pencarian polaadalah memanfaatkan Association Rule Mining dengan Cumulative SupportThresholds yang secara otomatis menghasilkan nilai support dan nilai confidencepaling optimal tanpa membutuhkan masukan dari pengguna. Hasil pengujian darihasil pemrediksian defect kode perangkat lunak secara otomatis memiliki nilaiakurasi 82,35%.


Sign in / Sign up

Export Citation Format

Share Document