scholarly journals A new type of lower bound for the largest eigenvalue of a symmetric matrix

2007 ◽  
Vol 427 (1) ◽  
pp. 119-129 ◽  
Author(s):  
Piet Van Mieghem
Author(s):  
Jürgen Jost ◽  
Raffaella Mulas ◽  
Florentin Münch

AbstractWe offer a new method for proving that the maxima eigenvalue of the normalized graph Laplacian of a graph with n vertices is at least $$\frac{n+1}{n-1}$$ n + 1 n - 1 provided the graph is not complete and that equality is attained if and only if the complement graph is a single edge or a complete bipartite graph with both parts of size $$\frac{n-1}{2}$$ n - 1 2 . With the same method, we also prove a new lower bound to the largest eigenvalue in terms of the minimum vertex degree, provided this is at most $$\frac{n-1}{2}$$ n - 1 2 .


2021 ◽  
Vol 2090 (1) ◽  
pp. 012127
Author(s):  
Rubí Arrizaga-Zercovich

Abstract A tree is a connected acyclic graph. A tree is called a starlike if exactly one of its vertices has degree greater than two. Let λι be the largest eigenvalue of the adjacency matrix of a starlike tree. In this work, we obtain a lower bound for the spectral radius of a starlike tree. This bound only depends of the maximum degree of the vertices.


2020 ◽  
Vol 3 (3) ◽  
pp. 41-52
Author(s):  
Alexander Farrugia ◽  

A pseudo walk matrix \(\mathbf{W}_\mathbf{v}\) of a graph \(G\) having adjacency matrix \(\mathbf{A}\) is an \(n\times n\) matrix with columns \(\mathbf{v},\mathbf{A}\mathbf{v},\mathbf{A}^2\mathbf{v},\ldots,\mathbf{A}^{n-1}\mathbf{v}\) whose Gram matrix has constant skew diagonals, each containing walk enumerations in \(G\). We consider the factorization over \(\mathbb{Q}\) of the minimal polynomial \(m(G,x)\) of \(\mathbf{A}\). We prove that the rank of \(\mathbf{W}_\mathbf{v}\), for any walk vector \(\mathbf{v}\), is equal to the sum of the degrees of some, or all, of the polynomial factors of \(m(G,x)\). For some adjacency matrix \(\mathbf{A}\) and a walk vector \(\mathbf{v}\), the pair \((\mathbf{A},\mathbf{v})\) is controllable if \(\mathbf{W}_\mathbf{v}\) has full rank. We show that for graphs having an irreducible characteristic polynomial over \(\mathbb{Q}\), the pair \((\mathbf{A},\mathbf{v})\) is controllable for any walk vector \(\mathbf{v}\). We obtain the number of such graphs on up to ten vertices, revealing that they appear to be commonplace. It is also shown that, for all walk vectors \(\mathbf{v}\), the degree of the minimal polynomial of the largest eigenvalue of \(\mathbf{A}\) is a lower bound for the rank of \(\mathbf{W}_\mathbf{v}\). If the rank of \(\mathbf{W}_\mathbf{v}\) attains this lower bound, then \((\mathbf{A},\mathbf{v})\) is called a recalcitrant pair. We reveal results on recalcitrant pairs and present a graph having the property that \((\mathbf{A},\mathbf{v})\) is neither controllable nor recalcitrant for any walk vector \(\mathbf{v}\).


Sign in / Sign up

Export Citation Format

Share Document