Out-of-plane free vibration analysis of rotating tapered beams in post-elastic regime

2009 ◽  
Vol 30 (8) ◽  
pp. 2875-2894 ◽  
Author(s):  
Debabrata Das ◽  
Prasanta Sahoo ◽  
Kashinath Saha
2018 ◽  
Vol 2018 ◽  
pp. 1-14
Author(s):  
Wang Zhipeng ◽  
Liu Wei ◽  
Yuan Yunbo ◽  
Shuai Zhijun ◽  
Guo Yibin ◽  
...  

Free vibration of rings is presented via wave approach theoretically. Firstly, based on the solutions of out-of-plane vibration, propagation, reflection, and coordination matrices are derived for the case of a fixed boundary at inner surface and a free boundary at outer surface. Then, assembling these matrices, characteristic equation of natural frequency is obtained. Wave approach is employed to study the free vibration of these ring structures. Natural frequencies calculated by wave approach are compared with those obtained by classical method and Finite Element Method (FEM). Afterwards natural frequencies of four type boundaries are calculated. Transverse vibration transmissibility of rings propagating from outer to inner and from inner to outer is investigated. Finally, the effects of structural and material parameters on free vibration are discussed in detail.


2010 ◽  
Vol 02 (03) ◽  
pp. 635-652 ◽  
Author(s):  
P. MALEKZADEH ◽  
M. R. GOLBAHAR HAGHIGHI ◽  
M. M. ATASHI

As a first endeavor, the out-of-plane free vibration analysis of thin-to-moderately thick functionally graded (FG) circular curved beams supported on two-parameter elastic foundation is presented. The formulation is derived based on the first-order shear deformation theory (FSDT), which includes the effects of shear deformation and rotary inertia due to both torsional and flexural vibrations. The material properties are assumed to be graded in the direction normal to the plane of the beam curvature. The differential quadrature method (DQM), as an efficient and accurate method, is employed to discretize the equations of motion and the related boundary conditions. In order to assure the accuracy of the formulation and the method of solution, convergence behavior of the nondimensional natural frequencies is examined for FG circular curved beams and comparison studies with those of isotropic curved beams, available in the literature, are performed. The effects of the elastic foundation coefficients, boundary conditions, the material graded index and different geometrical parameters on the natural frequency parameters of the FG circular curved beams are investigated. The new results can be used as benchmark solutions for future research works.


Sign in / Sign up

Export Citation Format

Share Document