dynamic stiffness matrix
Recently Published Documents


TOTAL DOCUMENTS

152
(FIVE YEARS 18)

H-INDEX

25
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Omar Gaber ◽  
Seyed M. Hashemi

The effect of bearings on the vibrational behavior of machine tool spindles is investigated. This is done through the development of a calibrated dynamic stiffness matrix (CDSM) method, where the bearings flexibility is represented by mass less linear spring elements with tuneable stiffness. A dedicated MAT LAB code is written to develop and to assemble the element stiffness matrices for the system’s multiple components and to apply the boundary conditions.The developed method is applied to an illustrative example of spindle system.When the spindle bearings are modeled as simply supported boundary conditions, the DSM model results in a fundamental frequency much higher than the system’s nominal value.The simply supported boundary conditions are then replaced by linear spring elements, and the spring constants are adjusted such that the resulting calibrated CDSM model leads to the nominal fundamental frequency of the spindle system.The spindle frequency results are also validated against the experimental data.The proposed method can be effectively applied to predict the vibration characteristics of spindle systems supported by bearings.


2021 ◽  
Author(s):  
Omar Gaber ◽  
Seyed M. Hashemi

The effect of bearings on the vibrational behavior of machine tool spindles is investigated. This is done through the development of a calibrated dynamic stiffness matrix (CDSM) method, where the bearings flexibility is represented by mass less linear spring elements with tuneable stiffness. A dedicated MAT LAB code is written to develop and to assemble the element stiffness matrices for the system’s multiple components and to apply the boundary conditions.The developed method is applied to an illustrative example of spindle system.When the spindle bearings are modeled as simply supported boundary conditions, the DSM model results in a fundamental frequency much higher than the system’s nominal value.The simply supported boundary conditions are then replaced by linear spring elements, and the spring constants are adjusted such that the resulting calibrated CDSM model leads to the nominal fundamental frequency of the spindle system.The spindle frequency results are also validated against the experimental data.The proposed method can be effectively applied to predict the vibration characteristics of spindle systems supported by bearings.


Author(s):  
Md. Imran Ali ◽  
Mohammad Sikandar Azam

This paper presents the formulation of dynamic stiffness matrix for the natural vibration analysis of porous power-law functionally graded Levy-type plate. In the process of formulating the dynamic stiffness matrix, Kirchhoff-Love plate theory in tandem with the notion of neutral surface has been taken on board. The developed dynamic stiffness matrix, a transcendental function of frequency, has been solved through the Wittrick–Williams algorithm. Hamilton’s principle is used to obtain the equation of motion and associated natural boundary conditions of porous power-law functionally graded plate. The variation across the thickness of the functionally graded plate’s material properties follows the power-law function. During the fabrication process, the microvoids and pores develop in functionally graded material plates. Three types of porosity distributions are considered in this article: even, uneven, and logarithmic. The eigenvalues computed by the dynamic stiffness matrix using Wittrick–Williams algorithm for isotropic, power-law functionally graded, and porous power-law functionally graded plate are juxtaposed with previously referred results, and good agreement is found. The significance of various parameters of plate vis-à-vis aspect ratio ( L/b), boundary conditions, volume fraction index ( p), porosity parameter ( e), and porosity distribution on the eigenvalues of the porous power-law functionally graded plate is examined. The effect of material density ratio and Young’s modulus ratio on the natural vibration of porous power-law functionally graded plate is also explained in this article. The results also prove that the method provided in the present work is highly accurate and computationally efficient and could be confidently used as a reference for further study of porous functionally graded material plate.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Mi Zhao ◽  
Xiaojing Wang ◽  
Piguang Wang ◽  
Chao Zhang ◽  
Xiuli Du

AbstractAn accurate frequency domain model is proposed to analyze the seismic response of uniform vertical cylinders with arbitrary cross section surrounded by water. According to the boundary conditions and using the variables separation method, the vertical modes of the hydrodynamic pressure are firstly obtained. Secondly, the three-dimensional wave equation can be simplified to a two-dimensional Helmholtz equation. Introducing the scaled boundary coordinate, a scaled boundary finite element (SBFE) equation which is a linear non-homogeneous second-order ordinary equation is derived by weighted residual method. The dynamic-stiffness matrix equation for the problem is furtherly derived. The continued fraction is acted as the solution of the dynamic-stiffness matrix for cylinder dynamic interaction of cylinder with infinite water. The coefficient matrices of the continued fraction are derived recursively from the SBFE equation of dynamic-stiffness. The accuracy of the present method is verified by comparing the hydrodynamic force on circular, elliptical and rectangle cylinders with the analytical or numerical solutions. Finally, the proposed model is used to analyze the natural frequency and seismic response of cylinders.


2020 ◽  
Vol 348 (5) ◽  
pp. 375-392
Author(s):  
Daniel Dorostghoal ◽  
Abdolreza Zare ◽  
Ali Alipour Mansourkhani

Sign in / Sign up

Export Citation Format

Share Document