vibration transmissibility
Recently Published Documents


TOTAL DOCUMENTS

186
(FIVE YEARS 55)

H-INDEX

12
(FIVE YEARS 2)

Author(s):  
Yamin Zhao ◽  
Junning Cui ◽  
Limin Zou ◽  
Zhongyi Cheng

To reduce the natural frequency of air isolators and realize low or ultra-low frequency air/magnetic composite vibration isolation with large payloads, a magnetically repulsive negative stiffness permanent magnetic array (MRNSPMA) is proposed. Specifically, we utilize cuboidal permanent magnets to form a spatial array that is mechanically repulsive in the horizontal direction and structurally parallel in the vertical direction. The superiority of MRNSPMA in achieving high amplitude negative stiffness is verified. Furthermore, the effects of structural parameters on vibration transmissibility under the base and force excitations are investigated with the introduction of MRNSPMA. The displacement transmissibility, the force transmissibility and the frequency corresponding to the peak transmissibility are significantly reduced, validating the promise of MRNSPMA for improving the isolation performance of cutting-edge scientific experimental systems and facilities.


2021 ◽  
pp. 095745652110557
Author(s):  
Yong Chen ◽  
Mian Jiang ◽  
Daoyong Wang ◽  
Kuanfang He

The mass variances of materials in buckets and the movements of excavation arms greatly impact powertrain vibration transmissibility in hydraulic excavators under working conditions. If the influence of mass variation among bucket contents and excavation arm motions on vibration transmissibility is not considered, then only limited improvements can be made to vibration isolation performance. In this paper, vibration transmissibility suppression for hydraulic excavators operating under working conditions were studied via multi-objective optimization for stiffness coefficients of suspension elements (SEs). First, the rigid-flexible coupling model of a hydraulic excavator with a flexible base was built using ADAMS software. In the model, the stiffness coefficients of the SEs were the targeted variables with constrained conditions, while the multi-objectives for optimization were the vibration transmissibility and energy decoupling rates of the powertrain. Vibration isolation transmissibility (VIT) of the mounting system was compared between situations with non-optimized and optimized stiffness coefficients. Finally, the amplitude changes of the resultant SE support forces were used to illustrate the effects of powertrain vibration transmissibility suppression. We found that the average value of VITs increases significantly during the optimization process for the stiffness coefficients of SEs, which indicates that the mounting system has better vibration isolation performance. The smaller amplitudes of the resultant support force illustrate the improvements to the performance of vibration transmissibility suppression of the powertrain via the optimization process.


2021 ◽  
Vol 2021 ◽  
pp. 342-347
Author(s):  
C. Grosu ◽  
M. Blaga

Textile materials are often subjected to different stresses, acting on them in two phases: during the knitting phase, when the yarns and the obtained structure are subjected to cyclic stress, but also during the use phase, when the knitted structures are subjected to various stresses. The dynamic behaviour of knitted fabrics in a vibrating environment is usually evaluated by standardized methods, such as the method using vibration exciters (e.g., ISO 10819:2013). However, in recent years, the authors' collective has carried out research to characterize the behaviour of knitted structures in a vibrating environment, using a well-known method for generating vibrations by impact excitation, which is specific to the mechanical field but also has a high potential for application in the textile field. This method refers to the determination of the free vibrations of an elastic system. Its measurement in the design phase of the system is considered a crucial step, since by knowing the frequency range of the system, the resonance phenomenon in the operational phase can be avoided. Similar results obtained by applying standardized methods for measuring vibration transmissibility and the currently adapted method from the field of mechanics to the field of textiles, represent a validation for this type of investigation process and also show the high potential of knitwear to be used in the vibration environment.


Vibration ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 743-758
Author(s):  
Marco Tarabini ◽  
Tammy Eger ◽  
Katie Goggins ◽  
Alex P. Moorhead ◽  
Filippo Goi

Vibration transmitted through the foot can lead to vibration white feet, resulting in blanching of the toes and the disruption of blood circulation. Controlled studies identifying industrial boot characteristics effective at attenuating vibration exposure are lacking. This work focused on the evaluation of vibration transmissibility of boot midsole materials and insoles across the range 10–200 Hz at different foot locations. Questionnaires were used to evaluate the comfort of each material. The materials were less effective at attenuating vibration transmitted to the toe region of the foot than the heel. Between 10 and 20 Hz, all midsole materials reduced the average vibration transmitted to the foot. The average transmissibility at the toes above 100 Hz was larger than 1, evidencing that none of the tested material protects the worker from vibration-related risks. There was a poor correlation between the vibration transmissibility and the subjective evaluation of comfort. Future research is needed to identify materials effective for protecting both the toe and the heel regions of the foot. Specific standards for shoe testing are required as well.


2021 ◽  
Author(s):  
Anastasia Bafouni - Kotta ◽  
Bart Bergen ◽  
Kris Van de Rostyne ◽  
Pantelis Nikolakopoulos

2021 ◽  
Vol 13 (8) ◽  
pp. 168781402110449
Author(s):  
Xin Liao ◽  
Xiaofei Du ◽  
Shaohua Li

In order to improve the vibration isolation performance of cab seat and ride comfort of the driver, a seat suspension structure of construction machinery cab is proposed based on negative stiffness structure (NSS) in this paper. The influences of different parameters of suspension system on dynamic stiffness are analyzed. The configuration parameter range of suspension system is obtained. Then, the nonlinear dynamic equation of the seat suspension system is established and the NSS optimization model is proposed. The vibration transmissibility characteristics of suspension structure are analyzed by different methods. The results show that the displacement and acceleration amplitude of optimized seat suspension system are obviously reduced, and the VDV and RMS in the vertical vibration direction for the seat are respectively decreased by 87% and 86%. The vibration transmissibility rate SEAT and the Ttrans are both decreased. Moreover, the peak frequencies of the vibration transmitted to the driver are not near the key frequency values which are easy to cause human discomfort. It indicates that the design of seat suspension system has no effect on the health condition of the driver after being vibrated. The advantages of vibration isolation performance of the designed NSS suspension system are demonstrated, improving the driver’s ride comfort and the working environment.


Vibration ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 444-481
Author(s):  
Ophélie Lariviere ◽  
Delphine Chadefaux ◽  
Christophe Sauret ◽  
Patricia Thoreux

Manual wheelchair (MWC) propulsion can expose the user to significant vibration. Human body exposure to certain vibrations can be detrimental to health, and a source of discomfort and fatigue. Therefore, identifying vibration exposure and key parameters influencing vibration transmissibility during MWC propulsion is crucial to protect MWC users from vibration risks. For that purpose, a systematic review using PRISMA recommendations was realizedtosynthesizethe current knowledge regarding vibration transmissibility during MWC propulsion. The 35 retrieved articles were classified into three groups: Vibration content, parameters influencing vibration transmission, and vibration transmission modeling. The review highlighted that MWC users experience vibration in the frequency range detrimental/uncomfortable for human vibration transmission during MWC propulsion depends on many parameters and is still scarcely studied and understood. A modeling and simulation approach would be an interesting way to assist physicians in selecting the best settings for a specific user, but many works (modeling, properties identification, etc.) must be done before being effective for clinical and industrial purposes.


Author(s):  
Yen-Po Liu ◽  
Yusuf Altintas

Abstract The structural dynamics of a machine tool at the tool center point characterizes its vibration response and machining stability which affects productivity. The dynamics are mostly dominated by the spindle-holder-tool assembly whose main vibration mode can change during machining due to centrifugal forces, thermal expansion, and gyroscopic moments generated at high spindle speeds. This paper proposes the identification of the spindle's in-process modal parameters: natural frequency, damping ratio and modal constant, by using a limited number of vibration transmissibility and critical chatter stability measurements. The classical inverse stability solution, which tunes the modal parameters to minimize prediction errors in chatter stability limits, is augmented with vibration transmissibility under two methods: (1) transmissibility-enhanced inverse stability solution: the modal parameters are updated to minimize prediction errors in chatter stability, and vibration transmissibility; (2) artificial neural network (ANN)-integrated inverse stability solution: the ANN uses vibration transmissibility to estimate the natural frequency and damping ratio, such that the inverse stability solution only needs to identify the modal constant. While both methods are experimentally validated, it is shown that the transmissibility-enhanced inverse stability solution is a more effective approach than the time-consuming ANN alternative for the estimation of in-process spindle dynamics.


Author(s):  
Colby W. Cushing ◽  
Matthew J. Kelsten ◽  
Andrew N. Norris ◽  
Michael R Haberman ◽  
Preston Wilson

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Guangming Dong ◽  
Jin Chen ◽  
Fagang Zhao

Bolted joints are widely used in industrial applications and joint failure can cause a disastrous accident if loosening happens. Bolt loosening detection can be made by regular manual inspection or by using sensors based on different physical principles, such as acoustoelastic effect, piezoelectric active sensing, and electromechanical impedance. Compared with the above methods, vibration based bolt looseness monitoring using accelerometers is appealing for its economy and convenience for measurement. In this paper, cargo bolts looseness monitoring under random excitation is studied based on vibration transmissibility, which overcomes the drawback of commonly used vibration methods in finding local bolt looseness. Vibration transmissibility analysis only uses two vibration transducers to monitor bolt group looseness, where the vibration signal below the cargo bolts is used as the “input” and the other one above the cargo bolts is used as the “output.” There are 12 bolts in the cargo bolts studied in this paper, providing an essential clamping force to fix cargo during transportation. Six kinds of bolt group looseness with an increasing degree are simulated in the experiment. The experimental analysis shows that variation of the spectral moment can be used to monitor the global variation of the torque wrench exerted on the cargo bolts. The early stage of the bolt group looseness is that some one or two bolts begin to loose; however, the spectrum moment factor is insensitive to the local bolt looseness in the bolt group. To address this issue, the eigensystem realization algorithm (ERA) based on random input and output is utilized to find the subtle eigenvalue variation of the system matrix, which is neglected by the frequency transmissibility function. The experimental results show the effectiveness of the proposed method for detecting local bolt looseness.


Sign in / Sign up

Export Citation Format

Share Document